
User’s Guide
Version 1

Embedded Target for the
TI TMS320C2000™ DSP Platform

For Use with Real-Time Workshop®

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for the TI TMS320C2000 DSP Platform User’s Guide
 COPYRIGHT 2003 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 2003 Online only New for Version 1.0 (Release 13SP1+)
 June 2004 Online only Revised for Version 1.1 (Release 14)

i

Contents

1
Getting Started

What Is the Embedded Target for the TI TMS320C2000
DSP Platform? . 1-2

Suitable Applications . 1-2

Setting Up and Configuring . 1-3
Platform Requirements — Hardware and Operating System . 1-3
Supported Hardware for Targets . 1-3
Software Requirements . 1-4
Verifying the Configuration . 1-5

Embedded Target for TI C2000 and
Code Composer Studio . 1-7

Default Project Configuration . 1-7

Scheduling and Timing . 1-8

Overview of Creating Models for Targeting 1-10
Online Help . 1-10
Notes About Selecting Blocks for Your Models 1-11
Setting Simulation Configuration Parameters 1-12
Building Your Model . 1-12

Using the c2000lib Blockset . 1-14
Hardware Setup . 1-14
Starting the c2000lib Library . 1-14
Setting Up the Model . 1-16
Adding Blocks to the Model . 1-23
Generating Code from the Model . 1-27
Creating Code Composer Studio Projects Without Loading . . 1-27

ii Contents

2
Using the IQmath Library

About the IQmath Library . 2-2
Common Characteristics . 2-2

Fixed-Point Numbers . 2-3
Signed Fixed-Point Numbers . 2-3
Q Format Notation . 2-4

Building Models . 2-7
Converting Data Types . 2-7
Using Sources and Sinks . 2-7
Choosing Blocks to Optimize Code . 2-7

3
Block Reference

Blocks — Categorical List . 3-2
C2400 DSP Chip Support Library (c2400dspchiplib) 3-2
C2800 DSP Chip Support Library (c2800dspchiplib) 3-2
Target Preferences Library (c2000tgtpreflib) 3-3
C28x Digital Motor Control Library (c28xdmclib) 3-3
C28x IQmath Library (tiiqmathlib) . 3-4

Blocks — Alphabetical List . 3-5

Index

1
Getting Started

This chapter describes how to use the Embedded Target for TI C2000 DSP to create and execute
applications on Texas Instruments C2000 development boards. To use the targeting software, you
should be familiar with using Simulink to create models and with the basic concepts of Real-Time
Workshop automatic code generation. To read more about Real-Time Workshop, refer to your
Real-Time Workshop documentation.

What Is the Embedded Target for the
TI TMS320C2000 DSP Platform?
(p. 1-2)

Introduces the Embedded Target for TI C2000 DSP and
describes some of its features and supported hardware

Setting Up and Configuring (p. 1-3) Describes the software and hardware required to use the
Embedded Target for the TI TMS320C2000 DSP Platform
and how to set them up

Embedded Target for TI C2000 and
Code Composer Studio (p. 1-7)

Information about Code Composer Studio

Scheduling and Timing (p. 1-8) Information about C2000 scheduling

Overview of Creating Models for
Targeting (p. 1-10)

Summary of steps required to create models for your
target

Using the c2000lib Blockset (p. 1-14) Example of creating a model and targeting hardware

1 Getting Started

1-2

What Is the Embedded Target for the TI TMS320C2000 DSP
Platform?

The Embedded Target for the TI TMS320C2000™ DSP Platform integrates
Simulink® and MATLAB® with Texas Instruments eXpressDSP™ tools. You
can use this product to develop and validate digital signal processing and
control designs from concept through code. The Embedded Target for the TI
TMS320C2000 DSP Platform uses C code generated by Real-Time Workshop®
and your TI development tools to generate a C language real-time
implementation of your Simulink model. Real-Time Workshop builds a Code
Composer Studio® project from the C code. You can compile, link, download,
and execute the generated code on an eZdsp™ DSP board from Spectrum
Digital.

Suitable Applications
The Embedded Target for the TI TMS320C2000 DSP Platform enables you to
develop digital signal processing and control applications. Some important
characteristics of the applications that you can develop are

• Fixed-point arithmetic

• Single rate

• Multirate

• Adaptive

• Frame based

Setting Up and Configuring

1-3

Setting Up and Configuring

Platform Requirements — Hardware and Operating
System
To run the Embedded Target for the TI TMS320C2000 DSP Platform, your
host PC must meet the following hardware configuration:

• Intel Pentium or Intel Pentium processor-compatible PC

• 64 MB RAM (128 MB recommended)

• 20 MB hard disk space available after installing MATLAB

• Color monitor

• One parallel printer port or one USB port to connect your target board to
your PC

• CD-ROM drive

• Windows NT 4.0 Server or Workstation, Windows 2000, or Windows XP

You may need additional hardware, such as signal sources and generators,
oscilloscopes or signal display systems, and assorted cables to test and evaluate
your application on your hardware.

Supported Hardware for Targets
The Embedded Target for TI C2000 DSP supports the following boards:

• TMS320F2812 eZdsp DSK — the F2812eZdsp DSP Starter Kit

• TMS320LF2407 eZdsp DSK — the LF2407eZdsp DSP Starter Kit

The above DSP Starter Kits (DSKs) help developers evaluate digital signal
processing applications for the Texas Instruments DSP chips. You can create,
test, and deploy your processing software and algorithms on the target
processor without the difficulties inherent in starting with the digital signal
processor itself and building the support hardware to test the application on
the processor. Instead, the development board provides the input hardware,
output hardware, timing circuitry, memory, and power for the digital signal
processor. Texas Instruments provides the software tools, such as the C
compiler, linker, assembler, and integrated development environment, for PC
users to develop, download, and test their algorithms and applications on the
processor.

1 Getting Started

1-4

Refer to the documentation provided with your hardware for information on
setting up and testing your target board.

Note You do not need to change any jumpers from their factory defaults on
either the LF2407 or F2812 target board.

Software Requirements

MathWorks Software
For up-to-date information about other MathWorks software you need to use
the Embedded Target for the TI TMS320C2000 DSP Platform, refer to the
MathWorks Web site — http://www.mathworks.com. Check the Products area
for the Embedded Target for the TI TMS320C2000 DSP Platform.

For information about the software required to use the Link for Code Composer
Studio Development Tools, refer to the Products area of the MathWorks Web
site — http://www.mathworks.com.

Texas Instruments Software
In addition to the required software from The MathWorks, Embedded Target
for the TI TMS320C2000 DSP Platform requires that you install the Texas
Instruments development tools and software listed in the following table.
Installing Code Composer Studio IDE Version 2.12 or 2.2 for the C28x series
installs the software shown.

Required TI Software for Targeting Your TI C2000 Hardware

Installed Product Additional Information

Assembler Creates object code (.obj) for C2000 boards from
assembly code

Compiler Compiles C code from the blocks in Simulink
models into object code (.obj). As a byproduct of the
compilation process, you get assembly code (.asm) as
well.

Setting Up and Configuring

1-5

In addition to the TI software, you need one or more TMS320F2812 eZdsp DSP
Starter Kits or TMS320LF2407 eZdsp DSP Starter Kits from Spectrum Digital.

Verifying the Configuration
To determine whether the Embedded Target for the TI TMS320C2000 DSP
Platform is installed on your system, type this command at the MATLAB
prompt.

c2000lib

When you enter this command, MATLAB displays the C2000 block library
containing the following libraries that comprise the C2000 library:

• C2800 DSP Core Support

• C2400 DSP Core Support

• Target Preferences

• C28x IQmath library

• C28x DMC library

If you do not see the listed libraries, or MATLAB does not recognize the
command, you need to install the Embedded Target for the TI TMS320C2000
DSP Platform. Without the software, you cannot use Simulink and Real-Time
Workshop to develop applications targeted to the TI boards.

Linker Combines various input files, such as object files
and libraries

Code Composer
Studio

Texas Instruments integrated development
environment (IDE) that provides code debugging
and development tools

TI C2000
miscellaneous
utilities

Various tools for developing applications for the
C2000 digital signal processor family

Code Composer
Setup Utility

Program you use to configure your CCS installation
by selecting your target boards or simulator

Required TI Software for Targeting Your TI C2000 Hardware (Continued)

Installed Product Additional Information

1 Getting Started

1-6

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the Products area at the MathWorks
Web site (http://www.mathworks.com).

To verify that Code Composer Studio (CCS) is installed on your machine, enter

ccsboardinfo

at the MATLAB command line. With CCS installed and configured, MATLAB
returns information about the boards that CCS recognizes on your machine, in
a form similar to the following listing.

Board Board Proc Processor Processor
Num Name Num Name Type
--- ---------------------------------- ---
1 F2812 Simulator 0 CPU TMS320C28xx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For the
Embedded Target for the TI TMS320C2000 DSP Platform to operate with CCS,
the CCS IDE must be able to run on its own.

Note For any model to work in the targeting environment, you must select
the discrete-time solver in the Solver options pane of the Simulink
Configuration Parameters dialog box. Targeting does not work with
continuous-time solvers.

Embedded Target for TI C2000 and Code Composer Studio

1-7

Embedded Target for TI C2000 and Code Composer Studio
Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE) . Used in combination with your Embedded Target for TI C2000 DSP and
Real-Time Workshop, CCS provides an integrated environment that, once
installed, requires no coding.

Executing code generated from Real-Time Workshop on a particular target
requires that Real-Time Workshop generate target code that is tailored to the
specific hardware target. Target-specific code includes I/O device drivers and
interrupt service routines (ISRs). Generated source code must be compiled and
linked using CCS so that it can be loaded and executed on a TI DSP. To help
you to build an executable, the Embedded Target for TI C2000 DSP uses the
Link for Code Composer Studio to start the code building process within CCS.
Once you download your executable to your target and run it, the code runs
wholly on the target. You can access the running process only from the CCS
debugging tools or across a link using Link for Code Composer Studio
Development Tools.

Default Project Configuration
CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to all files in your project. For
more information about the build options, refer to your TI documentation. The
models you build with the Embedded Target for TI C2000 DSP use a custom
configuration that provides a third combination of build and optimization
settings — custom_MW.

Default Build Options in the custom_MW Configuration
The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options. custom_MW uses
Function(-o2) for the compiler optimization level.

Your CCS documentation provides complete details on the compiler build
options. You can change the individual settings or the build configuration
within CCS.

1 Getting Started

1-8

Scheduling and Timing
A timer interrupt is used to run generated code in real time on the C2000 DSP.
Each iteration of the model solver is run after an interrupt has been posted and
serviced by an interrupt service routine (ISR). The code generated for the C28x
uses CPU_timer0. The code generated for the C24x uses an Event Manager (EV)
timer, which you can select.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set up
to ensure the desired rate as follows:

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812 or 216-1 for the LF2407), the CPU clock speed and, for the
LF2407, the TimerClockPrescaler setting in the appropriate Target
Preferences block. The CPU clock speed for the LF2407 is 40 MHz and for the
F2812 it is 150 MHz.

Maximum Sample Times

TimerClockPrescaler
Setting

C24x Maximum
Sample Time
(seconds)

C28x Maximum
Sample Time
(seconds)

1 0.0016 28.63

2 0.0032 N/A

4 0.0065 N/A

8 0.0131 N/A

16 0.0262 N/A

32 0.0524 N/A

Base Rate Sample Time Timer Period
CPU Clock Speed()

TimerClockPrescaler

---=

Scheduling and Timing

1-9

64 0.1048 N/A

128 0.2097 N/A

Maximum Sample Times (Continued)

TimerClockPrescaler
Setting

C24x Maximum
Sample Time
(seconds)

C28x Maximum
Sample Time
(seconds)

1 Getting Started

1-10

Overview of Creating Models for Targeting
After you have installed the supported development board, start MATLAB. At
the MATLAB command prompt, type

c2000lib

This opens the c2000lib Simulink blockset that includes libraries containing
blocks predefined for C2000 input and output devices. As needed, add the
blocks to your model. See “Using the c2000lib Blockset” on page 1-14 for an
example of how to use this library.

Create your real-time model for your application the way you create any other
Simulink model — by using standard blocks and C-MEX S-functions. Select
blocks to build your model from the following sources:

• Appropriate Target Preferences library block, to set preferences for your
target and application

• From the appropriate libraries in the c2000lib block library, to handle input
and output functions for your target hardware

• From Real-Time Workshop

• From Simulink Fixed Point

• Discrete time blocks from Simulink

• From any other blockset that meets your needs and operates in the discrete
time domain

Online Help
To get general help for using the Embedded Target for the TI TMS320C2000
DSP Platform, use the help feature in MATLAB. At the command prompt, type

help tic2000

to get a list of the functions and block libraries included in the Embedded
Target for the TI TMS320C2000 DSP Platform. Or select Help ->Full Product
Family Help from the menu bar in the MATLAB desktop. When you see the
Table of Contents in Help, select Embedded Target for the TI C2000 DSP.

Overview of Creating Models for Targeting

1-11

Notes About Selecting Blocks for Your Models
Many blocks in the blocksets communicate with your MATLAB workspace.
These blocks also generate code, but they do not work on the target as they do
on your desktop — in general, they slow your signal processing application
without adding instrumentation value.

For this reason, The MathWorks recommends that you avoid using certain
blocks, such as the Scope block and some source and sink blocks, in Simulink
models that you use on Embedded Target for TI C2000 DSP targets. The next
table presents the blocks you should not use in your target models.

Block Name/Category Library

Scope Simulink, Signal Processing Blockset

To Workspace Simulink

From Workspace Simulink

Spectrum Scope Signal Processing Blockset

To File Simulink

From File Simulink

Triggered to Workspace Signal Processing Blockset

Signal To Workspace Signal Processing Blockset

Signal From Workspace Signal Processing Blockset

Triggered Signal From
Workspace

Signal Processing Blockset

To Wave Device Signal Processing Blockset

From Wave Dvice Signal Processing Blockset

To Wave File Signal Processing Blockset

From Wave File Signal Processing Blockset

1 Getting Started

1-12

Setting Simulation Configuration Parameters
To set the simulation parameters manually, with your model open, select
Configuration Parameters from the Simation option. From this dialog, select
Real-Time Workshop. You must specify the appropriate version of the system
target file and template makefile. For the Embedded Target for the TI
TMS320C2000™ DSP Platform, in the Real-Time Workshop pane of the
dialog, specify

ti_C2000_grt.tlc

or, optionally, select

ti_C2000_ert.tlc

to select the correct target file or click Browse and select from the list of
targets. The associated template filename is automatically filled in.

A Generic Real-Time (GRT) target is the target configuration that generates
model code for a real-time system as if the resulting code was going to be
executed on your workstation. An Embedded Real-Time (ERT) target is the
target configuration that generates model code for execution on an
independent embedded real-time system. This option requires Real-Time
Workshop Embedded Coder.

You must also specify discrete time by selecting Fixed-step and discrete (no
continuous states) from the Solver panel of the Configuration Parameters
dialog.

When you drag a Target Preferences block into your model, you are given the
option to set basic simulation parameters automatically. Note that this option
does not appear if the Configuration Parameters dialog is open when you
drag the Target Preferences block into the model.

Building Your Model
With this configuration, you can generate a real-time executable and download
it your TI development board by clicking Build on the Real-Time Workshop
pane. Real-Time Workshop automatically generates C code and inserts the I/O
device drivers as specified by the hardware blocks in your block diagram, if
any. These device drivers are inserted in the generated C code as inlined
S-functions. For information about inlining S-functions, refer to your target
language compiler documentation. For a complete discussion of S-functions,
refer to your documentation about writing S-functions.

Overview of Creating Models for Targeting

1-13

Note To build, load, and run code successfully on your target board,
MATLAB must be able to locate that board in your system configuration.
Make sure that the Board Name in your Code Composer Studio setup and the
DSPBoardLabel in the Target Preference Block in your model match exactly.

During the same build operation, block parameter dialog entries are combined
into a project file for CCS for your TI C2000 board. If you selected the Build
and execute build action in the Target Preferences block, your makefile
invokes the TI cross-compiler to build an executable file that is automatically
downloaded via the parallel port to your target. After downloading the
executable file to the target, the build process runs the file on the board’s DSP.

Note After using the runtime Build option to generate and build code for
your application, you must perform the following reset sequence before you
can run that code on your board. If you want to rerun your application
manually once it has been generated, you must also use this procedure.

F2812 eZdsp Reset Sequence

1 Reset the board CPU

2 Load your code onto the target

3 Run your code on the target

LF2407 eZdsp Reset Sequence

1 Load your code onto the target

2 Reset the board CPU

3 Run your code on the target

1 Getting Started

1-14

Using the c2000lib Blockset
This section uses an example to demonstrate how to create a Simulink model
that uses the Embedded Target for TI C2000 DSP blocks to target your board.
The example creates a model that performs PWM duty cycle control via pulse
width change. It uses the C2812 ADC block to sample an analog voltage and
the C2812 PWM block to generate a pulse waveform. The analog voltage
controls the duty cycle of the PWM and you can observe the duty cycle change
on the oscilloscope. This model is also provided in the Demos library. Note that
the model in the Demos library also includes a model simulation.

Hardware Setup
The following hardware is needed for this example:

• Spectrum Digital eZdsp F2812

• Function generator

• Oscilloscope and probes

Connect the hardware as follows:

1 Connect the function generator output to the ADC input ADCINA0 on the
eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of the
oscilloscope.

Starting the c2000lib Library
At the MATLAB prompt, type

c2000lib

to open the c2000lib library blockset, which contains libraries of blocks
designed for targeting your board.

Using the c2000lib Blockset

1-15

The libraries are

• C2800 DSP Core Support (c2800dsplib) — Blocks to configure the codec on
the F2812 eZdsp DSK or on the F2812 DSP

• C2400 DSP Core Support (c2400dsplib) — Blocks to configure the codec on
the LF2407 eZdsp DSK or on the LF2407 DSP

• C28x IQMath Library (tiiqmathlib) — Fixed-point math blocks for use with
C28x targets

• C28x DMC Library (c28xdmclib) — Fixed-point math blocks for digital
motor control with C28x DSPs

• Target Preferences (c2000tgtpreflib) — Blocks to specify target
preferences and options. You do not connect this block to any other block in
your model.

1 Getting Started

1-16

• Info block — Online help

• Demos block — Demos window

For more information on each block, refer to its reference page.

Setting Up the Model
Preliminary tasks for setting up a new model include adding a Target
Preferences block, setting or verifying Target Preferences, and setting the
simulation parameters.

1 Select New from the File menu to create a new Simulink model.

2 Double-click the Target Preferences library in c2000lib to open it.

3 Drag the F2812 eZdsp block into your new model.

The following dialog appears, asking if you want preferences to be set
automatically.

F2812 eZdsp

Using the c2000lib Blockset

1-17

Click Yes to allow automatic setup. The following Simulation ->
Configuration Parameters are set:

The default Target configuration - System target file is ti_c2000.grt.tlc
because you need to purchase and install the optional Real-Time Workshop
Embedded Coder to use the ti_c2000_ert.tlc.

 Panel Field Setting

Solver Stop time inf

Solver Type Fixed-step
discrete

Data
Import/Export

Save to workspace - Time off

Data
Import/Export

Save to workspace - Output off

Hardware
Implementation

Device type TI C2000

Real-Time
Workshop

Target configuration - System
target file

ti_c2000_grt.tlc

Real-Time
Workshop

Target configuration -
Template makefile

ti_c2000_grt.tmf

1 Getting Started

1-18

Note One Target Preference block must be in each target model at the top
level. It does not connect to any other blocks, but stands alone to set the target
preferences for the model.

Select Configuration Parameters from the Simulation menu to verify and
set the simulation parameters for this model. Parameters you set in this
dialog belong to the model you are building. They are saved with the model
and stored in the model file. Refer to your Simulink documentation for
information on the Configuration Parameters dialog.

Use the Real-Time Workshop pane of the Configuration Parameters
dialog to set options for the real-time model. Refer to your Real-Time
Workshop documentation for detailed information on the Real-Time
Workshop pane options.

Using the c2000lib Blockset

1-19

• RTW system target file. Clicking Browse opens the Target File Browser
where you select ti_c2000_grt.tlc or ti_c2000_ert.tlc. When you select
your target configuration, Real-Time Workshop chooses the appropriate
system target file, template makefile, and make command. You can also enter
the target configuration filename, and Real-Time Workshop will fill in the
Template makefile and Make command selections.

• Make command. When you generate code from your digital signal
processing application, use the standard command make_rtw as the Make
command. On Configuration in the Target configuration category, enter
make_rtw for the Make command.

• Template makefile. Set the Template makefile option to
ti_c2000_grt.tmf or ti_c2000_ert.tmf when you build your application for
the C2000 target. If the template makefile shown in the option is not the one
for the selected System target file, click Browse to open the list of available
system target files and select the correct file from the list. Real-Time
Workshop then selects the appropriate template makefile.

• Generate code only. This option does not apply to targeting with the
Embedded Target for TI C2000 DSP. To generate source code without
building and executing the code on your target, in the Target Preference
BuildOptions — RunTimeOptions for BuildAction, select Generate code
only.

For all other Real-Time Workshop options, leave the default values for this
example.

1 Getting Started

1-20

4 Set the Target Preferences by double-clicking on the F2812 eZdsp block and
adjust these parameters. The default values are also shown in the figure
below. For descriptions of these fields, see the F2812 eZdsp reference page.

Build Options

Subfield Field Setting

Compiler Options CompilerVerbosity Verbose

KeepASMFiles False

OptimizationLevel Function(-o2)

SymbolicDebugging Yes

Linker Options CreateMAPFile True

KeepOBJFiles True

LinkerCMDFile Full_memory_map

RunTime Options BuildAction Build_and_execute

OverrunAction Continue

CCSLink Options

Field Setting

CCSHandleName CCS_Obj

ExportCCSHandle True

CodeGeneration Options

Subfield Field Setting

Scheduler Timer CPU_timer0

TimerClockPrescaler 1

Using the c2000lib Blockset

1-21

Note If the board label in your Code Composer Studio setup is different than
the default DSP Board Label shown in the Target Preferences block, you can
change the default setting. This would assure that whenever you drag a
Target Preferences block into a new model, the DSP Board Label of your
model will match the label in your Code Composer Studio setup.

Open the C2000 Target Preferences library. Double-click on the approprate
Target Preferences block. Click on DSP Board and change the text in the DSP
Board Label right column to the desired string. Click OK to close the Target
Preferences block and then close the library to save your change.

DSPBoard Options

Subfield Field Setting

DSP Board Label DSPBoardLabel F2812 PP Emulator
(see Note below)

DSP Chip DSPChipLabel TI TMS320C2812

eCAN BitRatePrescaler 10

EnhancedCANMode True

SAM Sample_one_time

SBJ Only_falling_edges

SJW 2

SelfTestMode False

TSEG1 8

TSEG2 6

1 Getting Started

1-22

Using the c2000lib Blockset

1-23

Adding Blocks to the Model

1 Double-click the C2800 DSP Chip Support Library to open it.

2 Drag the C28x ADC block into your model. Double-click the ADC block in the
model and set the Module to A, select only ADCINA0, and enter a Sample
time of 64/80000. Refer to the C28x ADC reference page for information on
these fields.

1 Getting Started

1-24

3 Drag the C28x PWM block into your model. Double-click the PWM block in
the model and set the following parameters. Refer to the C28x PWM
reference page for information on these fields.

Field Parameter

Module A

Waveform period source Specify via dialog

Waveform period 64000

Waveform type Asymmetric

Enable PWM1/PWM2 selected

Pulse width source Input port

Show additional parameters selected

Using the c2000lib Blockset

1-25

PWM1 control logic Active high

PWM2 control logic Active low

Use deadband for PWM1/PWM2 selected

Deadband prescaler 16

Deadband period 12

ADC start event Period interrupt

Field Parameter

1 Getting Started

1-26

4 Type Simulink at the MATLAB command line to start the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click on the Gain block in the model and set the
following parameters.

Field Parameter

Gain 30

Multiplication Element-wise(K.*u)

Sample time -1

Output data type mode Specify via dialog

Output data type uint(16)

Round integer calculations toward Floor

Parameter data type mode Same as input

Using the c2000lib Blockset

1-27

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block as shown.

Generating Code from the Model
This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop, refer to
your Real-Time Workshop documentation.

You start the automatic code generation process from the Simulink model
window by clicking Build in the Real-Time Workshop pane of the
Configuration Parameters dialog. Other ways of starting the code generation
process are by using the Build all button on the toolbar of your model, or by
using the keyboard shortcut, Ctrl+B, while your model is open and in focus.

The code building process consists of these tasks:

1 Real-Time Workshop invokes the function make_rtw to start the Real-Time
Workshop build procedure for a block diagram. make_rtw invokes the Target
Language Compiler to generate the code and then invokes the
language-specific make procedure.

2 gmake builds file modelname.out. Depending on the build options you select
in the Simulation Parameters dialog, gmake can initiate the sequence that
downloads and executes the model on your TI target board.

Creating Code Composer Studio Projects Without
Loading
To create projects in CCS without loading files to your target, follow these
steps:

1 In the Real-Time Workshop pane in the Simulation Parameters dialog,
select ti_c2000.tlc as the system target file.

1 Getting Started

1-28

2 Select Create_CCS_Project for the BuildAction in the Target Preferences
block. Note that the Build and Build_and_execute options create CCS
projects as well.

3 Set the other Target Preferences options, including those for CCSLink. On
the Real-Time Workshop pane of the Simulation Parameters dialog, click
Build to build your new CCS project.

Real-Time Workshop and the Embedded Target for TI C2000 DSP generate
all the files for your project in CCS and create a new project in the IDE. Your
new project is named for the model you built.

In CCS you see your project with the files in place in the directory tree.

2
Using the IQmath Library

About the IQmath Library (p. 2-2) Introduces the IQmath Library

Fixed-Point Numbers (p. 2-3) Representation of fixed-point numbers in the
IQmath Library

Building Models (p. 2-7) Issues to consider when you build models with the
IQmath Library

2 Using the IQmath Library

2-2

About the IQmath Library
The blocks in the C28x IQmath Library correspond to functions in the Texas
Instruments C28x IQmath Library assembly-code library, which target the TI
C2800 family of digital signal processors. You can use these blocks to run
simulations by building models in Simulink before generating code. Once you
develop your model, you can invoke Real-Time Workshop to generate
equivalent code that is optimized to run on a C2000 DSP. During code
generation, each IQmath Library block in your model is mapped to its
corresponding TI IQmath Library assembly-code routine to create
target-optimized code.

The IQmath Library blocks generally input and output fixed-point data types.
The block reference pages discuss the data types accepted and produced by
each block in the library. “Fixed-Point Numbers” on page 2-3 gives a brief
overview of using fixed-point data types in Simulink. For a discussion of this
topic, including issues with scaling and precision when performing fixed-point
operations, refer to the Simulink Fixed Point documentation.

You can use IQmath Library blocks with certain core Simulink blocks, as well
as with certain blocks from Simulink Fixed Point. To learn more about creating
models that include both IQmath Library blocks and blocks from other
blocksets, refer to “Building Models” on page 2-7.

Common Characteristics
The following characteristics are common to all IQmath Library blocks:

• Sample times are inherited from driving blocks.

• Blocks are single rate.

• Parameters are not tunable.

• All blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, refer
to the “Block Reference” pages.

Fixed-Point Numbers

2-3

Fixed-Point Numbers
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number (either
signed or unsigned) is shown below.

where

• is the ith binary digit.

• is the word size in bits.

• is the location of the most significant (highest) bit (MSB).

• is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this example,
therefore, the number is said to have four fractional bits, or a fraction length
of four.

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

•
… b0b1bws 2– b5 b3b4 b2bws 1–

MSB LSB

Binary point

bi

ws

bws 1–
b0

2 Using the IQmath Library

2-4

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a 1. For example, the two’s complement of 000101 is 111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the LSB)

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such as
addition or subtraction, hardware uses the same logic circuits regardless of the
value of the scale factor. In essence, the logic circuits have no knowledge of
a binary point. They perform signed or unsigned integer arithmetic — as if the
binary point is to the right of b0. Therefore, you determine the binary point.

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• designates that the number is in Q format notation — the Texas
Instruments representation for signed fixed-point numbers.

• is the number of bits used to designate the two’s complement integer
portion of the number.

• is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is always designated as the sign bit.
Representing a signed fixed-point data type in Q format always requires
m+n+1 bits to account for the sign.

Example — Q.15
For example, a signed 16-bit number with n = 15 bits to the right of the binary
point is expressed as

Q0.15

Q

m

n

Fixed-Point Numbers

2-5

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional
bits) = 16 bits total in the data type. In Q format notation, the m = 0 is often
implied, as in

Q.15

In Simulink Fixed Point, this data type is expressed as

sfrac16

or

sfix16_En15

In the Filter Design Toolbox, this data type is expressed as

[16 15]

Example — Q1.30
Multiplying two Q.15 numbers yields a product that is a signed 32-bit data type
with n = 30 bits to the right of the binary point. One bit is the designated sign
bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore, this number is expressed as

Q1.30

In Simulink Fixed Point, this data type is expressed as

sfix32_En30

In the Filter Design Toolbox, this data type is expressed as

[32 30]

Example — Q-2.17
Consider a signed 16-bit number with a scaling of 2(-17). This requires n = 17
bits to the right of the binary point, meaning that the most significant bit is
a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two's complement number 1011. When this number is extended

2 Using the IQmath Library

2-6

to 7 bits with sign extension, the number becomes 1111101 and the value of the
number remains the same.

One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total

Therefore, this number is expressed as

Q-2.17

In Simulink Fixed Point, this data type is expressed as

sfix16_En17

In the Filter Design Toolbox, this data type is expressed as

[16 17]

Example — Q17.-2
Consider a signed 16-bit number with a scaling of 2^(2) or 4. This means that
the binary point is implied to be 2 bits to the right of the 16 bits, or that there
are n = -2 bits to the right of the binary point. One bit must be the sign bit,
thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16

Therefore, this number is expressed as

Q17.-2

In Simulink Fixed Point, this data type is expressed as

sfix16_E2

In the Filter Design Toolbox, this data type is expressed as

[16 -2]

Building Models

2-7

Building Models
You can use IQmath Library blocks in models along with certain core
Simulink, Simulink Fixed Point, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

Converting Data Types
As always, it is vital to make sure that any blocks you connect in a model have
compatible input and output data types. In most cases, IQmath Library blocks
handle only a limited number of specific data types. You can refer to any block
reference page in “Block Reference” for a discussion of the data types that the
block accepts and produces.

When you connect IQmath Library blocks and Simulink Fixed Point blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink Fixed Point block to match the data type of the IQmath Library
block. Many Simulink Fixed Point blocks allow you to set their data type and
scaling through inheritance from the driving block, or through
backpropagation from the next block. This can be a good way to set the data
type of a Simulink Fixed Point block to match a connected IQmath Library
block.

Some Signal Processing Blockset blocks and core Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to an IQmath Library block.

Using Sources and Sinks
The IQmath Library does not include source or sink blocks. Use source or sink
blocks from the core Simulink library or Simulink Fixed Point in your models
with IQmath Library blocks.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than one
blockset. For example, both the IQmath Library and Simulink Fixed Point
have a Multiply block. When you are building a model to run on C2000 DSP,
choosing the block from the IQmath Library always yields better optimized
code. You can use a similar block from another library if it gives you

2 Using the IQmath Library

2-8

functionality that the IQmath Library block does not support, but you will
generate code that is less optimized.

3
Block Reference

Blocks — Categorical List (p. 3-2) Provides tables that list each block in the Embedded
Target for C2000 DSP by library

Blocks — Alphabetical List (p. 3-5) Lists each block in the Embedded Target for C2000 DSP
in alphabetical order

3 Block Reference

3-2

Blocks — Categorical List

C2400 DSP Chip Support Library (c2400dspchiplib)

C2800 DSP Chip Support Library (c2800dspchiplib)

C24x ADC Configure analog-to-digital converters (ADC)

C24x CAN Receive Configure an enhanced Control Area Network
receive mailbox

C24x CAN Transmit Configure an enhanced Control Area Network
transmit mailbox

C24x GPIO Digital Input Configure the general-purpose I/O pins for
digital input

C24x GPIO Digital Output Configure the general-purpose I/O pins for
digital output

C24x PWM Configure one or more pairs of pulse wave
modulators (PWMs)

C24x QEP Configure the quadrature encoder pulse
circuit

From Memory Retrieve data from a specific memory location
on the target

To Memory Write data to a specific memory location on
the target

C28x ADC Configure analog-to-digital converters (ADC)

C28x eCAN Receive Configure an enhanced Control Area Network
receive mailbox

C28x eCAN Transmit Configure an enhanced Control Area Network
transmit mailbox

C28x GPIO Digital Input Configure the general-purpose I/O pins for
digital input

Blocks — Categorical List

3-3

Target Preferences Library (c2000tgtpreflib)

C28x Digital Motor Control Library (c28xdmclib)

C28x GPIO Digital Output Configure the general-purpose I/O pins for
digital output

C28x PWM Configure one or more pairs of pulse wave
modulators (PWMs)

C28x QEP Configure the quadrature encoder pulse
circuit

From Memory Retrieve data from a specific memory location
on the target

To Memory Write data to a specific memory location on
the target

F2812 eZdsp Preferences for F2812 eZdsp DSK targets

LF2407 eZdsp Preferences for LF2407 eZdsp DSK targets

Clarke Transformation Convert balanced three phase quantities into
balanced two phase quadrature quantities

Inverse Park Transformation Convert rotating reference fame vectors to a
two-phase stationary reference frame

Park Transformation Convert two-phase stationary system vectors
to rotating system vectors

PID Controller Create a digital PID controller

Space Vector Generator Calculate duty ratios to generate stator
reference voltage

Speed Measurement Calculate motor speed

3 Block Reference

3-4

C28x IQmath Library (tiiqmathlib)
Absolute IQN Calculate absolute value

Arctangent IQN Calculate the four-quadrant arc tangent

Division IQN Divide two IQ numbers

Float to IQN Convert a floating-point number to an IQ
number

Fractional part IQN Return the fractional part of an IQ number

Fractional part IQN x int32 Return the fractional part of the result of
multiplying an IQ number and a long integer

Integer part IQN Return the integer part of an IQ number

Integer part IQN x int32 Return the integer part of the result of
multiplying an IQ number and a long integer

IQN to Float Convert an IQ number to a floating-point
number

IQN x int32 Multiply an IQ number and a long integer

IQN x IQN Multiply two IQ numbers with the same Q
format

IQN1 to IQN2 Convert an IQ number to a different Q
format

IQN1 x IQN2 Multiply two IQ numbers with different Q
formats

Magnitude IQN Calculate the magnitude of two orthogonal
IQ numbers

Saturate IQN Saturate an IQ number

Square Root IQN Calculate the square root or inverse square
root of an IQ number

Trig Fcn IQN Calculate the sine, cosine, or tangent of an IQ
number

Blocks — Alphabetical List

3-5

Blocks — Alphabetical List 3

This section contains block reference pages listed alphabetically.

Absolute IQN

3-6

3Absolute IQNPurpose Calculate the absolute value of an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block computes the absolute value of an IQ number input. The output is
also an IQ number.

Dialog Box

See Also Arctangent IQN, Division IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNabs

IQmath

Absolute IQN

Arctangent IQN

3-7

3Arctangent IQNPurpose Calculate the four-quadrant arc tangent

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block computes the four-quadrant arc tangent of the IQ number inputs
and produces IQ number output.

Function — Type of arc tangent to calculate, either

• atan2 — Compute the four-quadrant arc tangent with output in radians
with values between -pi and +pi.

• atan2PU — Compute the four-quadrant arc tangent per unit. If atan2(B,A)
is greater than or equal to zero, atan2PU(B,A) = atan2(B,A)/2*pi.
Otherwise, atan2PU(B,A) = atan2(B,A)/2*pi+1. The output is in per-unit
radians with values from 0 to 2pi radians.

Dialog Box

See Also Absolute IQN, Division IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNatan2

IQmath

Arctangent IQN

C24x ADC

3-8

3C24x ADCPurpose Generate code to configure the C24x analog-to-digital converter

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x ADC block configures the C24x ADC to perform analog-to-digital
conversion of signals connected to the selected ADC input pins. The ADC block
outputs digital values representing the analog input signal and stores the
converted values in the result register of your digital signal processor. You use
this block to capture and digitize analog signals from external sources such as
signal generators, frequency generators, or audio devices.

Triggering
The C24x ADC trigger mode depends on the internal setting of the Source
Start-of-Conversion (SOC) signal. The ADC is usually triggered by software at
the sample time intervals specified in the ADC block — this is unsychronized
mode.

In synchronized mode, the Event (EV) Manager associated with the same
module as the ADC triggers the ADC. In this case, the ADC is synchronized
with the PWM waveforms generated by the same EV unit via the ADC Start
Event signal setting. The ADC Start Event is set in the C24x PWM block. See
that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded-sequencer mode (see below).

Output
The output of the C24x ADC is a vector of uint16 values. The output values
are in the range 0 to 1023 because the C24x ADC is a 10-bit converter.

Modes
The C24x ADC block supports ADC operation in dual-sequencer and
cascaded-sequencer modes. In dual-sequencer mode, either Module A or Module
B can be used for the ADC block, and two ADC blocks are allowed in the model.
In cascaded-sequencer mode, both Module A and Module B are used for a single
ADC block.

C24x ADC

C24x ADC

C24x ADC

3-9

Module — Specifies which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0 through ADCINA7)

• B — Displays the ADC channels in module B (ADCINB0 through ADCINB7)

• A and B — Displays the ADC channels in both modules A and B (ADCINA0
through ADCINA7 and ADCINB0 through ADCINB7).

Use the check boxes to select the desired ADC channels.

Sample time — Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at which values are
read from the result registers. See “Scheduling and Timing” on page 1-8 for
additional information on timing.

To set different sample times for different groups of ADC channels, you must
add separate C24x ADC blocks to your model and set the desired sample times
for each block.

Dialog Box

See Also C24x PWM

C24x CAN Receive

3-10

3C24x CAN ReceivePurpose Configure a CAN mailbox to receive messages from the CAN pins and output
received messages at specified sample intervals

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x Control Area Network (CAN) Receive block generates source code for
receiving CAN messages through a CAN mailbox. The CAN module on the DSP
chip provides serial communication capability and has six mailboxes — two
for receive, two for transmit, and two configurable for receive or transmit. The
C24x supports CAN data frames in standard or extended format.

The C24x CAN Receive block has up to two and, optionally, three output ports.

• The first output port is the function call port, and a function call subsystem
should be connected to this port. When a new message is received, this
subsystem is executed.

• The second output port is the message data port. The received data is output
in the form of a vector of elements of the selected data type. The length of the
vector is always 8 bytes.

• The third output port is optional and appears only if Output message length
is selected.

Mailbox number — Unique number between 0 and 5 that refers to a mailbox
area in RAM. Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable
for receive or transmit, and 4 and 5 are transmit mailboxes. In standard data
frame mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is associated with a receive mailbox. Only messages that
match the mailbox message identifier are accepted into it.

Message type — Select Standard (11-bit identifier) or Extended
(29-bit identifier).

Sample time — Frequency with which the mailbox is polled to determine if a
new message has been received. A new message causes a function call to be
emitted from the mailbox.

Mailbox: 0
C24x CAN

Receive

f()

MsgMsgMsg

C24x CAN Receive

C24x CAN Receive

3-11

Data type — Type of data in the 8-byte data vector. Valid values are uint16
or unit32.

Output message length — Select to output the message length in bytes to the
third output port. If not selected, the block has only two output ports.

Dialog Box

See Also C24x CAN Transmit

References Detailed information on the CAN module is in the TMS320LF/LC240xA DSP
Controller Reference Guide — System and Peripherals, Literature Number
SPRU357B, available at the Texas Instruments Web site.

C24x CAN Transmit

3-12

3C24x CAN TransmitPurpose Configure a CAN mailbox to transmit messages to the CAN pins

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x Control Area Network (CAN) Transmit block generates source code
for transmitting CAN messages through a CAN mailbox. The CAN module on
the DSP chip provides serial communication capability and has six mailboxes
— two for receive, two for transmit, and two configurable for receive or
transmit. The C24x supports CAN data frames in standard or extended format.

Mailbox number — Unique number between 0 and 5 that refers to a mailbox
area in RAM. Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable
for receive or transmit, and 4 and 5 are transmit mailboxes. In standard data
frame mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is coded into a message that is sent to the CAN bus.

Message type — Select Standard (11-bit identifier) or Extended
(29-bit identifier).

Dialog Box

See Also C24x CAN Receive

Mailbox: 5
C24x CAN
Transmit

Msg

C24x CAN Transmit

C24x CAN Transmit

3-13

References Detailed information on the CAN module is in the TMS320LF/LC240xA DSP
Controller Reference Guide — System and Peripherals, Literature Number
SPRU357B, available at the Texas Instruments website.

C24x GPIO Digital Input

3-14

3C24x GPIO Digital InputPurpose Configure the shared general-purpose input/output pin registers

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital input. Each I/O port has one MUX register, which
is used to select peripheral operation or digital I/O operation.

IO Port — Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE, or
IOPF and select the I/O port bits to enable for digital input. Unselected bits are
available for peripheral functionality. Note that multiple GPIO DI blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/O, the corresponding peripheral function cannot be used.

Sample time — Time interval, in seconds, between consecutive input from the
pins.

Data type — Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type. Valid data
types are auto, double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

The following tables show the shared pins.

C24x GPIO DI

C24xGPIO_DI

IO MUX Output Control Register A

Bit Peripheral Name GPIO Name

3 QEP1 IOPA3

4 QEP2 IOPA4

6 PWM1 IOPA6

7 PWM2 IOPA7

8 PWM3 IOPB0

C24x GPIO Digital Input

3-15

9 PWM4 IOPB1

10 PWM5 IOPB2

11 PWM6 IOPB3

IO MUX Output Control Register C

Bit Peripheral
Name

GPIO Name

1 PWM7 IOPE1

2 PWM8 IOPE2

3 PWM9 IOPE3

4 PWM10 IOPE4

5 PWM11 IOPE5

6 PWM12 IOPE6

7 QEP3 IOPE7

8 QEP4 IOPF0

IO MUX Output Control Register A (Continued)

Bit Peripheral Name GPIO Name

C24x GPIO Digital Input

3-16

Dialog Box

See Also C24x GPIO Digital Output

C24x GPIO Digital Output

3-17

3C24x GPIO Digital OutputPurpose Configure the shared general-purpose input/output pin registers

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital output. Each I/O port has one MUX register,
which is used to select peripheral operation or digital I/O operation.

IO Port — Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE, or
IOPF and select the bits to enable for digital output. Unselected bits are
available for peripheral functionality. Note that multiple GPIO DO blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/O, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

C24x GPIO DO

C24xGPIO_DO

IO MUX Output Control Register A

Bit Peripheral Name GPIO Name

3 QEP1 IOPA3

4 QEP2 IOPA4

6 PWM1 IOPA6

7 PWM2 IOPA7

8 PWM3 IOPB0

9 PWM4 IOPB1

10 PWM5 IOPB2

11 PWM6 IOPB3

C24x GPIO Digital Output

3-18

IO MUX Output Control Register C

Bit Peripheral Name GPIO Name

1 PWM7 IOPE1

2 PWM8 IOPE2

3 PWM9 IOPE3

4 PWM10 IOPE4

5 PWM11 IOPE5

6 PWM12 IOPE6

7 QEP3 IOPE7

8 QEP4 IOPF0

C24x GPIO Digital Output

3-19

Dialog Box

See Also C24x GPIO Digital Input

C24x PWM

3-20

3C24x PWMPurpose Generate code that configures the Event Manager (EV) modules to generate
PWM waveforms

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description LF2407 DSPs include a set of pulse width modulators (PWM) used to generate
various signals. This block provides options to set the A or B module Event
Managers to generate the waveforms you require. The twelve PWMs are
configured in six pairs, with three pairs in each module.

Timer Panel
Module — Specifies which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and
PWM5/PWM6).

• B — Displays the PWMs in module B (PWM7/PWM8, PWM9/PWM10, and
PWM11/PWM12).

Note PWMs in module A use Event Manager A, Timer 1, and PWMs in
module B use Event Manager B, Timer 3. You should make sure that the
TimerClock selected in the Scheduling section of the LF2407 eZdsp Target
Preferences block does not conflict with the timers used for the PWMs.

Waveform period source — Source from which the waveform period value is
obtained. Select Specify via dialog to enter the value in Waveform period
or select Input port to use a value from the input port.

Waveform period — Period of the timer used to generate PWM waveform
measured in clock cycles. The relationship betwen the timer period and the
waveform period depends on the Waveform type.

Note Clock cycles refers to the system CPU clock on the LF2407 chip. This
clock is 40 MHz.

C24x PWM

C24x PWM

C24x PWM

3-21

Waveform type — Type of waveform to be generated by the PWM pair. The
LF2407 PWMs can generate two types of waveforms: Asymmetric and
Symmetric. The following illustration shows the difference between the two
types of waveforms.

Output 1/Output 2/Output 3 Panels
Enable PWM#/PWM# — Check to activate the PWM pair. PWM1/PWM2 are
activated via the Output 1 panel, PWM3/PWM4 are on Output 2, and
PWM5/PWM6 are on Output 3.

Pulse width source — Source from which the pulse width is obtained. Select
Specify via dialog to enter the value in Pulse width or select Input port to
use a value from the input port.

���������	

������

��������	

������

������
����������

������
����������

���������������

������

���������������

������

C24x PWM

3-22

Pulse width — Width of the pulse in clock cycles. The default is for the first
PWM in a pair to be triggered active high and for the second PWM to be
triggered active low.

PWM# control logic — Control logic trigger for the PWM. Active high
causes the pulse value to go from low to high and Active low causes the pulse
value to go from high to low.

Deadband Panel
Use deadband for PWM#/PWM# — Enables a deadband area of no signal
overlap at the beginning of particular PWM pair signals.

Deadband prescaler — Number of clock cycles, which when multiplied by the
Deadband period, determines the size of the deadband. Selectable values are 1,
2, 4, 8, 16, and 32.

Deadband period — Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from 1 to 15.

ADC Control Panel
ADC start event — Controls whether this PWM and ADC associated with the
same EV module are synchronized. Select None for no synchronization or select

Deadband

PWM active high

PWM active low

C24x PWM

3-23

an interrupt to generate the Source Start-of-Conversion (SOC) signal for the
associated ADC.

• None — The ADC and PWM are not synchronized. The EV does not generate
an SOC signal and the ADC is triggered by software (that is, the A/D
conversion occurs when the ADC block is executed in the software).

• Underflow interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the board’s General Purpose (GP)
timer counter reaches a hexadecimal value of FFFFh.

• Period interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value in GP timer matches
the value in the period register. The value set in Waveform period above
determines the value in the register.

Note If you select Period interrupt and specify a sampling time less than
the specified (Waveform period)/(CPU Clock speed), zero-order hold
interpolation will occur. (For example, if you enter 64000 as the waveform
period, the period for the ADC register is 64000/40 MHz = .0016. If you enter a
Sample time in the C24x ADC dialog that is less than this result, it will cause
zero-order hold interpolation.)

• Compare interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value in the GP timer
matches the value in the compare register. The value set in Pulse width
above determines the value in the register.

C24x PWM

3-24

Dialog Box Only the Timer panel is shown in the figure below. Press the desired tab to
display other panels.

See Also C24x ADC

C24x QEP

3-25

3C24x QEPPurpose Configure the quadrature encoder pulse circuit

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description Each L2407 Event Manager has three capture units, which can log transitions
on its capture unit pins. Event manager A (EVA) uses capture units 1, 2, and
3. Event manager B (EVB) uses capture units 4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts quadrature
encoded input pulses on these capture unit pins. QEP pulses are two sequences
of pulses with varying frequency and a fixed phase shift of 90 degrees (or
one-quarter of a period). Both edges of the QEP pulses are counted so the
frequency of the QEP clock is four times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful for
obtaining speed and position information from a rotating machine. Logic in the
QEP circuit determines the direction of rotation by which sequence is leading.
For module A, if the QEP1 sequence leads, the general-purpose (GP) timer
counts up and if the QEP2 sequence leads, the timer counts down. The pulse
count and frequency determine the angular position and speed.

Module — Specifies which QEP pins to use:

• A — Uses QEP1 and QEP2 pins.

• B — Uses QEP3 and QEP4 pins.

Counting mode — Specifies how to count the QEP pulses:

• CountBase — Count the pulses based on the board’s GP Timer 2 (or GP
Timer 4 for EVB).

• RPMBase — Count the machine’s revolutions per minute.

Positive rotation — Defines whether to use Clockwise or Counter
clockwise as the direction to use as postitive rotation. This field appears only
if you select RPMBase above.

Encoder resolution — Number of QEP pulses per revolution. This field
appears only if you select RPMBase above.

Sample time — Time interval, in seconds, between consecutive reads from the
QEP pins.

C24x QEP

C24xQEP

C24x QEP

3-26

Data type — Data type of the QEP pin data. The data is read as 16-bit data
and then cast to the selected data type. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, uint32 or boolean.

Dialog Box

C28x ADC

3-27

3C28x ADCPurpose Generate code to configure the ADC to output data streams

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x ADC block configures the C28x ADC to perform analog-to-digital
conversion of signals connected to the selected ADC input pins. The ADC block
outputs digital values reprensenting the analog input signal and stores the
converted values in the result register of your digital signal processor. You use
this block to capture and digitize analog signals from external sources such as
signal generators, frequency generators, or audio devices.

Triggering
The C28x ADC trigger mode depends on the internal setting of the Source
Start-of-Conversion (SOC) signal. The ADC is usually triggered by software at
the sample time intervals specified in the ADC block — this is unsychronized
mode.

In synchronized mode, the Event (EV) Manager associated with the same
module as the ADC triggers the ADC. In this case, the ADC is synchronized
with the PWM waveforms generated by the same EV unit via the ADC Start
Event signal setting. The ADC Start Event is set in the C28x PWM block. See
that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded-sequencer mode (see below).

Output
The output of the C28x ADC is a vector of uint16 values. The output values
are in the range 0 to 4095 because the C28x ADC is 12-bit converter.

Modes
The C28x ADC block supports ADC operation in dual-sequencer and
cascaded-sequencer modes. In dual-sequencer mode, either Module A or Module
B can be used for the ADC block, and two ADC blocks are allowed in the model.
In cascaded-sequencer mode, both Module A and Module B are used for a single
ADC block.

C28x ADC

C28x ADC

C28x ADC

3-28

Module — Specifies which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0 through
ADCINA7).

• B — Displays the ADC channels in module B (ADCINB0 through
ADCINB7).

• A and B — Displays the ADC channels in both modules A and B (ADCINA0
through ADCINA7 and ADCINB0 through ADCINB7)

Use the check boxes to select the desired ADC channels.

Sample time — Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at which values are
read from the result registers. See “Scheduling and Timing” on page 1-8 for
additional information on timing.

To set different sample times for different groups of ADC channels, you must
add separate C28x ADC blocks to your model and set the desired sample times
for each block.

C28x ADC

3-29

Dialog Box

See Also C28x PWM

C28x eCAN Receive

3-30

3C28x eCAN ReceivePurpose Configure an eCAN mailbox to receive messages from the eCAN pins and
output received messages at specified sample intervals

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x enhanced Control Area Network (eCAN) Receive block generates
source code for receiving eCAN messages through an eCAN mailbox. The eCAN
module on the DSP chip provides serial communication capability and has 32
mailboxes configurable for receive or transmit. The C28x supports eCAN data
frames in standard or extended format.

The C28x eCAN Receive block has up to two and, optionally, three output ports.

• The first output port is the function call port, and a function call subsystem
should be connected to this port. When a new message is received, this
subsystem is executed.

• The second output port is the message data port. The received data is output
in the form of a vector of elements of the selected data type. The length of the
vector is always 8 bytes.

• The third output port is optional and appears only if Output message length
is selected.

Mailbox number — Unique number between 0 and 15 for standard or between
0 and 31 for enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is associated with a receive mailbox. Only messages that
match the mailbox message identifier are accepted into it.

Message type — Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time — Frequency with which the mailbox is polled to determine if a
new message has been received. A new message causes a function call to be
emitted from the mailbox.

Data type — Type of the data in the 8-byte data vector. Valid values are uint16
or unit32.

Mailbox: 0
C28x eCAN

Receive

f()

MsgMsgMsg

C28x eCAN Receive

C28x eCAN Receive

3-31

Output message length — Select to output the message length in bytes to the
third output port. If not selected, the block has only two output ports.

Dialog Box

See Also C28x eCAN Transmit

References Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature Number
SPRU074A, available at the Texas Instruments Web site.

C28x eCAN Transmit

3-32

3C28x eCAN TransmitPurpose Configure an eCAN mailbox to transmit a message to the board’s CAN bus pins

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C84x enhanced Control Area Network (eCAN) Transmit block generates
source code for transmitting eCAN messages through an eCAN mailbox. The
eCAN module on the DSP chip provides serial communication capability and
has 32 mailboxes configurable for receive or transmit. The C28x supports
eCAN data frames in standard or extended format.

Mailbox number — Unique number between 0 and 15 for standard or between
0 and 31 for enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec (' '), respectively, to convert the entry. The
message identifier is coded into a message that is sent to the CAN bus.

Message type — Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Dialog Box

See Also C28x eCAN Receive

Mailbox: 1
C28x eCAN

Transmit
Msg

C28x eCAN Transmit

C28x eCAN Transmit

3-33

References Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature Number
SPRU074A, available at the Texas Instruments Web site.

C28x GPIO Digital Input

3-34

3C28x GPIO Digital InputPurpose Configure the shared general-purpose input/output pin registers

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital input. Each I/O port has one MUX register, which
is used to select peripheral operation or digital I/O operation.

IO Port — Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE, or
IOPF and select the I/O Port bits to enable for digital input. Unselected bits are
available for peripheral functionality. Note that multiple GPIO DI blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/O, the corresponding peripheral function cannot be used.

Sample time — Time interval, in seconds, between consecutive input from the
pins.

Data type — Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type. Valid data
types are auto, double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

The following tables show the shared pins.

C28x GPIO DI

C28xGPIO_DI

GPIO A MUX

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

C28x GPIO Digital Input

3-35

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1 GPIOA8

9 QEP2 GPIOA9

GPIO B MUX

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3 GPIOB8

9 QEP4 GPIOB9

GPIO A MUX (Continued)

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

C28x GPIO Digital Input

3-36

Dialog Box

See Also C28x GPIO Digital Output

C28x GPIO Digital Output

3-37

3C28x GPIO Digital OutputPurpose Configure the shared general-purpose input/output pin registers

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital output. Each I/O port has one MUX register,
which is used to select peripheral operation or digital I/O operation.

IO Port — Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE, or
IOPF and select the I/O Port bits to enable for digital output. Unselected bits
are available for peripheral functionality. Note that multiple GPIO DO blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/O, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

C28x GPIO DO

C28xGPIO_DO

GPIO A MUX

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1 GPIOA8

9 QEP2 GPIOA9

C28x GPIO Digital Output

3-38

GPIO B MUX

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3 GPIOB8

9 QEP4 GPIOB9

C28x GPIO Digital Output

3-39

Dialog Box

See Also C28x GPIO Digital Input

C28x PWM

3-40

3C28x PWMPurpose Generate code that configures the Event Manager (EV) modules to generate
PWM waveforms

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description F2812 DSPs include a suite of pulse width modulators (PWM) used to generate
various signals. This block provides options to set the A or B module Event
Managers to generate the waveforms you require. The twelve PWMs are
configured in six pairs, with three pairs in each module.

Timer Panel
Module — Specifies which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and
PWM5/PWM6).

• B — Displays the PWMs in module B (PWM7/PWM8, PWM9/PWM10, and
PWM11/PWM12).

Note PWMs in module A use Event Manager A, Timer 1, and PWMs in
module B use Event Manager B, Timer 3. You should make sure that the
TimerClock selected in the Scheduling section of the F2812 eZdsp Target
Preferences block does not conflict with the timers used for the PWMs.

Waveform period source — Source from which the waveform period value is
obtained. Select Specify via dialog to enter the value in Waveform period
or select Input port to use a value from the input port.

Waveform period — Period of the timer used to generate the PWM waveform
measured in clock cycles. The relationship betwen the timer period and the
waveform period depends on the Waveform type.

Note Clock cycles refers to the system CPU clock on the F2812 chip. This
clock is 150 MHz.

C28x PWM

C28x PWM

C28x PWM

3-41

Waveform type — Type of waveform to be generated by the PWM pair. The
F2812 PWMs can generate two types of waveforms: Asymmetric and
Symmetric. The following illustration shows the difference between the two
types of waveforms.

Output 1/Output 2/Output 3 Panels
Enable PWM#/PWM# — Check to activate the PWM pair. PWM1/PWM2 are
activated via the Output 1 panel, PWM3/PWM4 are on Output 2, and
PWM5/PWM6 are on Output 3.

Pulse width source — Source from which the pulse width is obtained. Select
Specify via dialog to enter the value in Pulse width or select Input port to
use a value from the input port.

���������	

������

��������	

������

������
����������

������
����������

���������������

������

���������������

������

C28x PWM

3-42

Pulse width — Width of the pulse in clock cycles. The default is for the first
PWM in a pair to be triggered active high and for the second PWM to be
triggered active low.

PWM# control logic — Control logic trigger for the PWM. Active high causes
the pulse value to go from low to high and Active low causes the pulse value
to go from high to low.

Deadband Panel
Use deadband for PWM#/PWM# — Enables a deadband area of no signal
overlap at the beginning of particular PWM pair signals.

Deadband prescaler — Number of clock cycles, which, when multiplied by the
Deadband period, determines the size of the deadband. Selectable values are 1,
2, 4, 8, 16, and 32.

Deadband period — Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from 1 to 15.

ADC Control Panel
ADC start event — Controls whether this PWM and ADC associated with the
same EV module are synchronized. Select None for no synchronization or select

Deadband

PWM active high

PWM active low

C28x PWM

3-43

an interrupt to generate the Source Start-of-Conversion (SOC) signal for the
associated ADC.

• None — The ADC and PWM are not synchronized. The EV does not generate
an SOC signal and the ADC is triggered by software (that is, the A/D
conversion occurs when the ADC block is executed in the software).

• Underflow interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the board’s General Purpose (GP)
timer counter reaches a hexadecimal value of FFFFh.

• Period interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value in GP timer matches
the value in the period register. The value set in Waveform period above
determines the value in the register.

Note If you select Period interrupt and specify a sampling time less than
the specified (Waveform period)/(CPU Clock speed), zero-order hold
interpolation will occur. (For example, if you enter 64000 as the waveform
period, the period for the ADC register is 64000/150 MHz = 4.26673-004. If
you enter a Sample time in the C28x ADC dialog that is less than this result,
it will cause zero-order hold interpolation.)

• Compare interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value in the GP timer
matches the value in the compare register. The value set in Pulse width
above determines the value in the register.

C28x PWM

3-44

Dialog Box Only the Timer panel is shown in the figure below. Press the desired tab to
display other panels.

See Also C28x ADC

C28x QEP

3-45

3C28x QEPPurpose Configure the quadrature encoder pulse circuit

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description Each F2812 Event Manager has three capture units, which can log transitions
on its capture unit pins. Event manager A (EVA) uses capture units 1, 2, and
3. Event manager B (EVB) uses capture units 4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts quadrature
encoded input pulses on these capture unit pins. QEP pulses are two sequences
of pulses with varying frequency and a fixed phase shift of 90 degrees (or
one-quarter of a period). Both edges of the QEP pulses are counted so the
frequency of the QEP clock is four times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful for
obtaining speed and position information from a rotating machine. Logic in the
QEP circuit determines the direction of rotation by which sequence is leading.
For module A, if the QEP1 sequence leads, the general-purpose (GP) Timer
counts up and if the QEP2 seequence leads, the timer counts down. The pulse
count and frequency determine the angular position and speed.

Module — Specifies which QEP pins to use:

• A — Uses QEP1 and QEP2 pins.

• B — Uses QEP3 and QEP4 pins.

Counting mode — Specifies how to count the QEP pulses:

• CountBase — Count the pulses based on the board’s GP Timer 2 (or GP
Timer 4 for EVB).

• RPMBase — Count the machine’s revolutions per minute.

Positive rotation — Defines whether to use Clockwise or Counter clockwise
as the direction to use as postitive rotation. This field appears only if you select
RPMBase above.

Encoder resolution — Number of QEP pulses per revolution. This field
appears only if you select RPMBase above.

Sample time — Time interval, in seconds, between consecutive reads from the
QEP pins.

C24x QEP

C24xQEP

C28x QEP

3-46

Data type — Data type of the QEP pin data. The data is read as 16-bit data
and then cast to the selected data type. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, uint32 or boolean.

Dialog Box

Clarke Transformation

3-47

3Clarke TransformationPurpose Transform three-phase quantities into two-phase quadrature quantities

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block converts balanced three-phase quantities into balanced two-phase
quadrature quantities. The transformation implements these equations

Id = Ia

and is illustrated in the following figure.

The inputs to this block are the phase a (Ia) and phase b (Ib) components of the
balanced three-phase quantities and the outputs are the direct axis (Id)
component and the quadrature axis (Iq) of the transformed signal.

The instantaneous outputs are defined by the following equations:

id = I sin(wt)

iq = I sin(wt + π/2)

Ia

Ib

Id

Iq
Clarke

DMC

Clarke
Transformation

Iq 2Ib Ia+() 3⁄=

Clarke Transformation

3-48

Dialog Box

See Also Inverse Park Transformation, Park Transformation, PID Controller, Space
Vector Generator, Speed Measurement

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

Division IQN

3-49

3Division IQNPurpose Divide two IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block divides two numbers that use the same Q format, using the
Newton-Raphson technique. The resulting quotient uses the same Q format at
the inputs.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNdiv

IQmath

IQN / IQN

F2812 eZdsp

3-50

3F2812 eZdspPurpose Set the build, link, and board code generation preferences for F2812 eZdsp
DSK targets

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation for your
Spectrum Digital F2812 eZdsp target. Adding this block to your Simulink
model provides access to building, linking, compiling, and targeting settings
you need to configure the code that Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

BuildOptions — CompilerOptions

• Compiler Verbosity — Amount of information the compiler returns while it
runs. Options are

- Verbose — Returns all compiler messages.

- Quiet — Suppresses compiler progress messages.

- Super_quiet — Suppresses all compiler messages.

• KeepASMFiles — Whether Real-Time Workshop and the Embedded Target
for TI C2000 DSP save your assembly language (.asm) files after creation.
The default is true — .asm files are kept in your current directory. If you
choose not to keep the .asm files, set this option to false.

• OptimizationLevel — Degree of optimization provided by the TI optimizing
compiler to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create new projects, the
Embedded Target for TI C2000 DSP sets the optimization to Function(-o2).

• SymbolicDebugging — Whether to generate symbolic debugging directives
that the C source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes — symbolic debugging is enabled.

F2812 eZdsp

F2812 eZdsp

3-51

BuildOptions — LinkerOptions

• CreateMAPFile — Whether the linker produces a map of the input and
output sections, including null areas, and places the listing in a file in your
current directory with the name modelname.map. The default is True — the
listing is produced.

• KeepOBJFiles — Whether Real-Time Workshop and the Embedded Target
for TI C2000 DSP save your object (.obj) files after creation. The linker uses
object (.obj extension) files to generate a single executable common object
file format (COFF) file that you run on the target DSP. The object files are
saved to your current project directory. Saving your .obj files can speed up
the compile process by not having to recompile files that you have not
changed. The default is True — the .obj files are retained.

• LinkerCMDFile — Type of linker command file to use when the linker runs.
Linker command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility. Linker
command file types are

- Internal_memory_map — Uses the small memory model on the target,
which requires that all sections of the code and data fit into the memory
available only on the F2812 DSP chip (minus the flash memory).

- Full_memory_map — Uses the large memory model on the target, which
does not restrict the size of the code and data sections to DSP memory only.
Your data can use the storage space up to the limits of the board.

- Custom_file — Uses the file in the File Name field. This option allows you
to target custom boards. You must specify the full path of the file. Note
that the software does not verify that the commands in this file are correct.

When you select the Internal_memory_map option, the Embedded Target for
TI C2000 DSP specifies that only the available internal memory on the
F2812 is used. Internal_memory_map represents the most efficient memory
use.

If you select Internal_memory_map, but your data or program requires far
calls, the TI compiler returns an error message like the following in the CCS
IDE:
error: can't allocate '.far'

or

F2812 eZdsp

3-52

error: can't allocate '.text'

indicating that your data does not fit in internal memory or your code or
program do not fit in internal memory. To eliminate these errors, select
Full_memory_map. Note that your program might run more slowly than if you
use the internal map option.

BuildOptions — RunTimeOptions

• BuildAction — Action taken by Real-Time Workshop when you click Build
or press Ctrl+B in the Simulation Parameters dialog box. The actions are
cumulative — each listed action adds features to the previous action on the
list and includes all the previous features:

- Generate_code_only — Directs Real-Time Workshop to generate C code
only from the model. It does not use the TI software tools, such as the
compiler and linker, and you do not need to have CCS installed. Also,
MATLAB does not create the handle to CCS that results from the other
options.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in a
build directory named modelname_C2000_rtw in your MATLAB working
directory. This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

- Create_CCS_Project — Directs Real-Time Workshop to start CCS and
populate a new project with the files from the build process. Selecting this
setting enables the CCS board number option so you can select which
installed board to target. This option offers a convenient way to build
projects in CCS.

- Build — Builds the executable COFF file, but does not download the file
to the target.

- Build_and_execute — Directs Real-Time Workshop to download and run
your generated code as an executable on your target. This is the default.

F2812 eZdsp

3-53

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

• OverrunAction — Defines the action to take when an interrupt overrun
occurs.

- Continue — Ignore overruns encountered while running the model. This
is the default.

- Halt — Stop program execution.

CCSLink

• CCSHandleName — Name of the CCS handle. Click in the edit box to
change the name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link between
MATLAB and CCS. If you have used the link portion of the Embedded Target
for TI C2000 DSP, you are familiar with function ccsdsp, which creates links
between the IDE and MATLAB. This option refers to the same link, called cc
in the function reference pages. Although MATLAB to CCS is a link, it is
actually a handle to an object that contains information about the object,
such as the target board and processor it accesses.

• ExportCCSHandle — Whether to export the CCS handle to your MATLAB
workspace, giving it the name you assigned in CCSHandleName. If this is
set to true, after you build your model, you will see the CCS object in your
MATLAB workspace browser with the name you provided and class type
ccsdsp.

CodeGeneration

• Scheduler

- Timer — CPU timer to use for scheduling.

DSPBoard

• DSPBoardLabel — Name of the installed DSP board. Click in the edit box
to change the label.

F2812 eZdsp

3-54

Note The board label here must match exactly the label (name) of the board
entered in your Code Composer Studio setup.

• DSPChip

- DSPChipLabel — DSP chip model. Select the DSP chip installed on your
target. The chip model is fixed for the F2812 eZdsp. If you change the chip
model, an error will be generated in code generation.

- eCAN — Parameters that affect the extended control area network
(eCAN) module. Most of these parameters affect the eCAN bit timing. The
CAN protocol divides the nominal bit time into four segments, which are
reflected in the settable parameters below. The four segments are

SYNCSEG — Time used to synchronize the nodes on the bus. It is always
one time quantum (TQ), which is defined as

where SYSCLK is the CAN module system clock frequency, and the
BitRatePrescaler is defined below.

PROP_SEG — Time used to compensate for the physical delays in the
network

PHASE_SEG1 — Phase used to compensate for positive edge phase error

PHASE_SEG2 — Phase used to compensate for negative edge phase error

The settable parameters are

BitRatePrescaler — Value by which to scale the bit rate. Valid values are
from 1 to 256. As noted in the equation above, this value determines the
value of TQ.

TQ 1
SYSCLK
-------------------------- BitRatePrescalar 1+()⋅=

F2812 eZdsp

3-55

EnhancedCANMode — Whether to use the CAN module in extended
mode, which provides additional mailboxes and time stamping. The
default is True. Setting this parameter to False enables only standard
mode.

SAM — Number of samples used by the CAN module to determine the
CAN bus level. Selecting Sample_one_time samples once at the sampling
point. Selecting Sample_three_times samples once at the sampling point
and twice before at a distance of TQ/2. A majority decision is made from
the three points.

SBG — Sets the message resynchronization triggering. Options are
Only_falling_edges and Both_falling_and_rising_edges.

SJW — Sets the synchronization jump width, which determines how many
units of TQ a bit is allowed to be shortened or lengthened when
resynchronizing.

SelfTestMode — If True, sets the eCAN module to loopback mode, where
a “dummy” acknowledge message is sent back without needing an
acknowledge bit. The default is False.

TSEG1 — Sets the value of time segment 1, which, with TSEG2 and BRP,
determines the length of a bit on the eCAN bus. TSEG1 must be greater
than TSEG2 and the Information Processing Time (IPT). The IPT is the
time needed to process one bit and corresponds to two TQ units.
TSEG1 = PROP_SEG + PHASE_SEG1. Valid values for TSEG1 are from
1 through 16.

TSEG2 — Sets the value of time segment 2 (PHASE_SEG2), which, with
TSEG1 and BRP, determines the length of a bit on the eCAN bus. TSEG2

F2812 eZdsp

3-56

must be less than or equal to TSEG1 and greater than or equal to IPT.
Valid values for TSEG2 are from 1 through 8.

The eCAN bit timing is shown in the following illustration.

CAN Bit Timing

����

����� !

��������"�������

�#$ �#$

�� !� �� !%

��������
�����

������
�����

F2812 eZdsp

3-57

Dialog Box

See Also C28x ADC, C28x eCAN Receive, C28x eCAN Transmit, C28x PWM

Float to IQN

3-58

3Float to IQNPurpose Convert a floating-point number to an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts a floating-point number to an IQ number. The Q value of
the output is specified in the following field:

Q value — Q value from 1 to 30 that specifies the precision of the output

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQN

IQmath

Float to IQN

Fractional part IQN

3-59

3Fractional part IQNPurpose Return the fractional portion of an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block returns the fractional portion of an IQ number. The returned value
is an IQ number in the same IQ format.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float, IQN x
int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate
IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNfrac

IQmath

Fractional part IQN

Fractional part IQN x int32

3-60

3Fractional part IQN x int32Purpose Multiply an IQ number with a long integer and return the ractional part of the
result

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and returns the
fractional portion of the resulting IQ number.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Integer part IQN, Integer part IQN x int32, IQN to Float, IQN x int32,
IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate IQN,
Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyl32frac

IQmath

Fractional part
IQN x int32

From Memory

3-61

3From MemoryPurpose Generate code that reads data from any valid memory address on the board,
internal or external

Library c2400spchiplib or c2800spchiplib in Embedded Target for TI C2000 DSP

Description This block retrieves data of the specified data type from a particular memory
address on the target.

Note Although the block icon and dialog box shown here are for the C24x,
the same block and dialog box apply to the C28x.

Memory address — Address of the target memory location, in hexadecimal,
from which to read data.

Note To ensure the correct operation of this block, you must specify exactly
the desired memory location. Refer to your Linker CMD file for available
memory locations.

Data type — Data type of the data to obtain from the above memory address.
The data is read as 16-bit data and then cast to the selected data type. Valid
data types are double, single, int8, uint8, int16, uint16, int32, and uint32.

Sample time — Time interval, in seconds, between consecutive reads from the
specified memory location.

Samples per frame — Number of elements of the specified data type to be read
from the memory region starting at the given address.

From
Memory

C24x From Memory

From Memory

3-62

Dialog Box

See Also To Memory

Integer part IQN

3-63

3Integer part IQNPurpose Return the integer portion of an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block returns the integer portion of an IQ number. The returned value is
a long integer.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN x int32, IQN to Float, IQN
x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate
IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNint

IQmath

Integer part IQN

Integer part IQN x int32

3-64

3Integer part IQN x int32Purpose Multiply an IQ number with a long integer and return the integer part of the
result

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and returns the
integer portion of the resulting IQ number as a long integer.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, IQN to Float, IQN x int32,
IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate IQN,
Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyl32int

IQmath

Integer part
IQN x int32

Inverse Park Transformation

3-65

3Inverse Park TransformationPurpose Convert rotating reference frame vectors to two-phase stationary reference
frame

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block converts vectors in an orthogonal rotating reference frame to a
two-phase orthogonal stationary reference frame. The transformation
implements these equations

and is illustrated in the following figure.

The inputs to this block are the direct axis (Vd) and quadrature axis (Vq)
components of the transformed signal in the rotating frame and the phase
angle (theta) between the stationary and rotating frames.

The outputs are the direct axis (Va) and the quadrature axis (Vb) components
of the transformed signal.

Vd

Vq

theta

Va

VbIPark

DMC

Inverse Park
Transformation

Va Vd θcos Vq θsin–=

Vb Vd θsin Vq θcos+=

Inverse Park Transformation

3-66

Dialog Box

See Also Clarke Transformation, Park Transformation, PID Controller, Space Vector
Generator, Speed Measurement

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

IQN to Float

3-67

3IQN to FloatPurpose Convert an IQ number to a floating-point number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts an IQ input to an equivalent floating-point number. The
output is a single floating-point number.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNtoF

IQmath

IQN to Float

IQN x int32

3-68

3IQN x int32Purpose Multiply an IQ number with a long integer and return an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and produces an IQ
output of the same Q value as the IQ input.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyl32

IQmath

IQN x int32

IQN x IQN

3-69

3IQN x IQNPurpose Multiply two IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies two IQ numbers. Optionally, it can also round and
saturate the result.

Multiply option — Type of multiplication to perform:

• Multiply — Multiply the numbers.

• Multiply with Rounding — Multiply the numbers and round the result.

• Multiply with Rounding and Saturation — Multiply the numbers and
round and saturate the result to the maximum value.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpy

IQmath

IQN x IQN

IQN1 to IQN2

3-70

3IQN1 to IQN2Purpose Convert an IQ number to a different Q format

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts an IQ number in a particular Q format to a different Q
format.

Q value — Q value from 1 to 30 that specifies the precision of the output

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNtoIQX

IQmath

IQN1 to IQN2

IQN1 x IQN2

3-71

3IQN1 x IQN2Purpose Multiply two IQ numbers that are in different Q formats

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiples two IQ numbers when the numbers are represented in
different Q formats. The format of the result is specified in the following field:

Q value — Q value from 1 to 30 that specifies the precision of the output

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyIQx

IQmath

IQN1 x IQN2

LF2407 eZdsp

3-72

3LF2407 eZdspPurpose Set the build, link, and board code generation preferences for LF2407 eZdsp
DSK targets

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation for your
Spectrum Digital LF2407 eZdsp target. Adding this block to your Simulink
model provides access to building, linking, compiling, and targeting settings
you need to configure the code that Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

BuildOptios — CompilerOptions

• Compiler Verbosity — Amount of information the compiler returns while it
runs. Options are

- Verbose — Returns all compiler messages.

- Quiet — Suppresses compiler progress messages.

- Super_quiet — Suppresses all compiler messages.

• KeepASMFiles — Whether Real-Time Workshop and the Embedded Target
for TI C2000 DSP save your assembly language (.asm) files after creation.
The default is true — .asm files are kept in your current directory. If you
choose not to keep the .asm files, set this option to false.

• OptimizationLevel — Degree of optimization provided by the TI optimizing
compiler to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create new projects, the
Embedded Target for TI C2000 DSP sets the optimization to Function(-o2).

• SymbolicDebugging — Whether to generate symbolic debugging directives
that the C source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes — symbolic debugging is enabled.

LF2407 eZdsp

LF2407 eZdsp

3-73

BuildOptions — LinkerOptions

• CreateMAPFile — Whether the linker produces a map of the input and
output sections, including null areas, and places the listing in a file in your
current directory with the name modelname.map. The default is True — the
listing is produced.

• KeepOBJFiles — Whether Real-Time Workshop and the Embedded Target
for TI C2000 DSP save your object (.obj) files after creation. The linker uses
object (.obj extension) files to generate a single executable common object
file format (COFF) file that you run on the target DSP. The object files are
saved to your current project directory. Saving your .obj files can speed up
the compile process by not having to recompile files that you have not
changed. The default is True — the .obj files are retained.

• LinkerCMDFile — Type of linker command file to use when the linker runs.
Linker command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility. Linker
command file types are

- Internal_memory_map — This option is not supported. Use
Full_memory_map or Custom_file.

- Full_memory_map — Uses the large memory model on the target, which
does not restrict the size of the code and data sections to DSP memory only.
Your data can use the storage space up to the limits of the board.

- Custom_file — Uses the file in the File Name field.

When you select the Internal_memory_map option, the Embedded Target for
TI C2000 DSP specifies that only the available internal memory on the
LF2407 is used. Internal_memory_map represents the most efficient
memory use.

If you select Internal_memory_map, but your data or program requires far
calls, the TI compiler returns an error message like the following in the CCS
IDE:
error: can't allocate '.far'

or
error: can't allocate '.text'

indicating that your data does not fit in internal memory or your code or
program do not fit in internal memory. To eliminate these errors, select

LF2407 eZdsp

3-74

Full_memory_map. Note that your program might run more slowly than if you
use the internal map option.

BuildOptions — RunTimeOptions

• BuildAction — Action taken by Real-Time Workshop when you click Build
or press Ctrl+B in the Simulation Parameters dialog box. The actions are
cumulative — each listed action adds features to the previous action on the
list and includes all the previous features:

- Generate_code_only — Directs Real-Time Workshop to generate C code
only from the model. It does not use the TI software tools, such as the
compiler and linker, and you do not need to have CCS installed. Also,
MATLAB does not create the handle to CCS that results from the other
options.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in a
build directory named modelname_C2000_rtw in your MATLAB working
directory. This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

- Create_CCS_Project — Directs Real-Time Workshop to start CCS and
populate a new project with the files from the build process. Selecting this
setting enables the CCS board number option so you can select which
installed board to target. This option offers a convenient way to build
projects in CCS.

- Build — Builds the executable COFF file, but does not download the file
to the target.

- Build_and_execute — Directs Real-Time Workshop to download and run
your generated code as an executable on your target. This is the default.

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

• OverrunAction — Defines the action to take when an interrupt overrun
occurs.

LF2407 eZdsp

3-75

- Continue — Ignore overruns encountered while running the model. This
is the default.

- Halt — Stop program execution.

CCSLink

• CCSHandleName — Name of the CCS handle. Click in the edit box to
change the name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link between
MATLAB and CCS. If you have used the link portion of the Embedded Target
for TI C2000 DSP, you are familiar with function ccsdsp, which creates links
between the IDE and MATLAB. This option refers to the same link, called cc
in the function reference pages. Although MATLAB to CCS is a link, it is
actually a handle to an object that contains information about the object,
such as the target board and processor it accesses.

• ExportCCSHandle — Whether to export the CCS handle to your MATLAB
workspace, giving it the name you assigned in CCSHandleName. If this is
set to true, after you build your model, you will see the CCS object in your
MATLAB workspace browser with the name you provided and class type
ccsdsp.

CodeGeneration

• Scheduler

- Timer — Event manager (EV) timer to use for scheduling.

- TimerClockPrescaler — Clock divider factor by which to prescale the
selected timer to produce the desired model rate. The system clock for the
TMS320LF2407 DSP is 40 MHz.

DSPBoard

• DSPBoardLabel — Name of the installed DSP board. Click in the edit box
to change the label.

Note The board label here must match exactly the label (name) of the board
entered in your Code Composer Studio setup.

LF2407 eZdsp

3-76

• DSPChip

- CAN — Parameters that affect the control area network (CAN) module.
Most of these parameters affect the CAN bit timing. The CAN protocol
divides the nominal bit time into four segments, which are reflected in the
settable parameters below. The four segments are

SYNCSEG — Time used to synchronize the nodes on the bus. It is always
one time quantum (TQ), which is defined as

where SYSCLK is the CAN module system clock frequency, and the
BitRatePrescaler is defined below.

PROP_SEG — Time used to compensate for the physical delays in the
network

PHASE_SEG1 — Phase used to compensate for positive edge phase error

PHASE_SEG2 — Phase used to compensate for negative edge phase error

The settable parameters are

BitRatePrescaler — Value by which to scale the bit rate. Valid values are
from 1 to 256. As noted in the equation above, this value determines the
value of TQ.

SAM — Number of samples used by the CAN module to determine the
CAN bus level. Selecting Sample_one_time samples once at the sampling
point. Selecting Sample_three_times samples once at the sampling point

TQ 1
SYSCLK
-------------------------- BitRatePrescalar 1+()⋅=

LF2407 eZdsp

3-77

and twice before at a distance of TQ/2. A majority decision is made from
the three points.

SBG — Sets the message resynchronization triggering. Options are
Only_falling_edges and Both_falling_and_rising_edges.

SJW — Sets the synchronization jump width, which determines how many
units of TQ a bit is allowed to be shortened or lengthened when
resynchronizing.

SelfTestMode — If True, sets the CAN module to loopback mode, where a
“dummy” acknowledge message is sent back without needing an
acknowledge bit.

TSEG1 — Sets the value of time segment 1, which, with TSEG2 and BRP,
determines the length of a bit on the CAN bus. TSEG1 must be greater
than TSEG2 and the Information Processing Time (IPT). The IPT is the
time needed to process one bit and corresponds to two TQ units.
TSEG1 = PROP_SEG + PHASE_SEG1. Valid values for TSEG1 are from
1 through 16.

TSEG2 — Sets the value of time segment 2 (PHASE_SEG2), which, with
TSEG1 and BRP, determines the length of a bit on the CAN bus. TSEG2
must be less than or equal to TSEG1 and greater than or equal to IPT.
Valid values for TSEG2 are from 1 through 8.

- DSP Chip Label — DSP chip model. Select the DSP chip installed on your
target. The chip model is fixed for the LF2407 eZdsp. If you change the
chip model, an error will be generated in code generation.

The CAN bit timing is shown in the following illustration.

LF2407 eZdsp

3-78

CAN Bit Timing

����

����� !

��������"�������

�#$ �#$

�� !� �� !%

��������
�����

������
�����

LF2407 eZdsp

3-79

Dialog Box

See Also C24x ADC, C24x CAN Receive, C24x CAN Transmit, C24x PWM

Magnitude IQN

3-80

3Magnitude IQNPurpose Calculate the magnitude of two IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates the magnitude of two IQ numbers using

The output is an IQ number in the same Q format as the input.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Saturate
IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmag

IQmath

Magnitude IQN

a2 b2+

Park Transformation

3-81

3Park TransformationPurpose Convert two-phase stationary system vectors to rotating system vectors

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block converts vectors in balanced two-phase orthogonal stationary
systems into an orthogonal rotating reference frame. The transformation
implements these equations

and is illustrated in the following figure.

The inputs to this block are the direct axis (Va) and the quadrature axis (Vb)
components of the transformed signal and the phase angle (theta) between the
stationary and rotating frames.

The outputs are the direct axis (Vd) and quadrature axis (Vq) components of the
transformed signal in the rotating frame.

The instantaneous inputs are defined by the following equations.

id = I sin(wt)

iq = I sin(wt + π/2)

Va

Vb

theta

Vd

VqPark

DMC

Park
Transformation

Vd Va θcos Vb θsin+=

Vq Va θsin Vb θcos+=

Park Transformation

3-82

Dialog Box

See Also Clarke Transformation, Inverse Park Transformation, PID Controller, Space
Vector Generator, Speed Measurement

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

PID Controller

3-83

3PID ControllerPurpose Create a digital PID controller

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block implements a 32-bit digital PID controller with antiwindup
correction. The inputs are a reference input (ref) and a feedback input (fdb)
and the output (out) is the saturated PID output. The following diagram shows
a PID controller with antiwindup.

The differential equation describing the PID controller before saturation that
is implemented in this block is

upresat(t) = up(t) + ui(t) + ud(t)

where upresat is the PID output before saturation, up is the proportional term,
ui is the integral term with saturation correction, and ud is the derivative term.

The proportional term is

up(t) = Kpe(t)

where Kp is the proportional gain of the PID controller and e(t) is the error
between the reference and feedback inputs.

ref

fdb

out

PID

DMC

PID Controller

PID Controller

3-84

The integral term with saturation correction is

where Kc is the integral correction gain of the the PID controller.

The derivative term is

where Td is the derivative time of the PID controller. In discrete terms, the
derivative gain is defined as Kd = Td/T, and the integral gain is defined as Ki =
T/Ti, where T is the sampling period and Ti is the integral time of the PID
controller.

The above differential equations are transformed into a difference equations by
backward approximation.

Set the following values in the block dialog box:

Proportional gain — Amount of proportional gain (Kp) to apply to the PID

Integral gain — Amount of gain (Ki) to apply to the integration equation

Integral correction gain — Amount of correction gain (Kc) to apply to the
integration equation

Derivative gain — Amount of gain (Kd) to apply to the derivative equation.

Minimum output — Minimum allowable value of the PID output

Maximum output — Maximum allowable value of the PID output

ui t()
Kp
Ti
------- e ς() ς K+ c u t() upresat– t()()d

0
t
∫=

ud t() KpTd
de t()

dt
--------------=

PID Controller

3-85

Dialog Box

See Also Clarke Transformation, Inverse Park Transformation, Park Transformation,
Space Vector Generator, Speed Measurement

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

Saturate IQN

3-86

3Saturate IQNPurpose Saturate an IQ value to specified limits

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block saturates an input IQ number to the specified positive and negative
limits. The returned value is an IQ number of the same Q value as the input.

Positive Limit — Maximum positive value to which to saturate

Negative Limit — Minimum negative value to which to saturate

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Square Root IQN, Trig Fcn IQN

A Y

IQsat

IQmath

Saturate IQN

Space Vector Generator

3-87

3Space Vector GeneratorPurpose Calculate duty ratios to generate stator reference voltage

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block calculates appropriate duty ratios needed to generate a given stator
reference voltage using space vector PWM technique. Space vector pulse width
modulation is a switching sequence of the upper three power devices of a
three-phase voltage source inverter and is used in applications such as AC
induction and permanent magnet synchronous motor drives. The switching
scheme results in three pseudo-sinusoidal currents in the stator phases. This
technique approximates a given stator reference voltage vector by combining
the switching pattern corresponding to the basic space vectors.

The inputs to this block are the alpha component, which is the reference stator
voltage vector on the direct axis stationary reference frame (Va), and the beta
component, which is the reference stator voltage vector on the direct axis
quadrature reference frame (Vb). The alpha and beta components are
transformed via the inverse Clarke equation and projected into reference phase
voltages. These voltages are represented in the outputs as the duty ratios of
the PWM1 (Ta), PWM3 (Tb), and PWM5 (Tc).

Dialog Box

See Also Clarke Transformation, Inverse Park Transformation, Park Transformation,
PID Controller, Speed Measurement

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

Speed Measurement

3-88

3Speed MeasurementPurpose Calculate motor speed

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block calculates the motor speed based on the rotor position when the
direction information is available. The inputs are the electrical angle (theta)
and the direction of rotation (dir) from the QEP encoder. The outputs are the
speed in per-unit frequency (freq) and the speed in revolutions per minute
(rpm).

Base speed — Nominal speed of the machine in rpm.

Differentiator constant — Constant used in the differentiator equation that
describes the rotor position.

Low-pass filter constant — Constant to apply to the low-pass filter. This
constant is 1/(1+T*(2πfc)), where T is the sampling period and fc is the cutoff
frequency. The 1/(2πfc) term is the low-pass filter time constant. A low-pass
filter is used in this block to reduce amplifying noise generated by the
differentiator.

Dialog Box

theta

dir

freq

RPMSpeed

DMC

Speed Measurement

Speed Measurement

3-89

See Also Clarke Transformation, Inverse Park Transformation, Park Transformation,
PID Controller, Space Vector Generator

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

Square Root IQN

3-90

3Square Root IQNPurpose Calculate the square root or inverse square root

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates the square root or inverse square root of an IQ number
and returns an IQ number of the same Q format. The block uses table lookup
and a Newton-Raphson approximation.

Function — Whether to calculate the square root or inverse square root

• Square root (_sqrt) — Compute the square root.

• Inverse square root (_isqrt) — Compute the inverse square root.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Trig Fcn IQN

A Y

IQNsqrt

IQmath

Square Root IQN

To Memory

3-91

3To MemoryPurpose Generate code that writes data to any valid memory address on the board,
internal or external

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block sends data of the specified data type to a particular memory address
on the target.

Note Although the block icon and dialog box shown here are for the C24x,
the same block and dialog box apply to the C28x.

Memory address — Address of the target memory location, in hexadecimal,
to which to write data

Data type — Type of data to be written to the above memory address. Valid
data types are double, single, int8, uint8, int16, uint16, int32, and uint32.
The data is cast from the selected data type to 16-bit data.

Write at initialization — Whether to write the specified Value at program
start

Value — First value of data to be written to memory at program start

Write at termination — Whether to write the specified Value at program end

Value — Last value of data to be written to memory at program termination

Write at every sample time — Whether to write data in real time during
program execution

To
Memory

C24x To Memory

To Memory

3-92

Note If your To Memory block is set to write to memory at every sample time
interval (that is, it has an incoming port) and it receives a vector signal input
of N elements, a corresponding memory region starting with the specified
Memory address is updated at every sample time. If you specify an Initial
and/or Termination value, that value is written to all locations in the same
memory region at initialization and/or termination.

If your To Memory block does not write to memory at every sample time (that
is, it does not have an incoming port) and you specify an Initial and/or
Termination value, that value is written to a single memory location that
corresponds to the specified Memory address.

Dialog Box

See Also From Memory

Trig Fcn IQN

3-93

3Trig Fcn IQNPurpose Calculate the sine, cosine, or arc tangent

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates basic trigonometric functions and returns the result as an
IQ number. Valid Q values for _IQsin and _IQcos are 1 to 29. For all others,
valid Q values are 1 to 30.

Function — Type of trigonometric function to calculate:

• _IQsin — Compute the sine (sin(A)), where A is in radians.

• _IQsinPU — Compute the sine per unit (sin(2*pi*A)), where A is in
per-unit radians.

• _IQcos — Compute the cosine (cos(A)), where A is in radians.

• _IQcosPU — Compute the cosine per unit (cos(2*pi*A)), where A is in
per-unit radians.

• _IQatan — Compute the arc tangent (tan(A)), where A is in radians.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN

A Y

IQNtrig

IQmath

Trig Fcn IQN

Trig Fcn IQN

3-94

Index-1

Index

A
Absolute IQN block 3-6
ADC blocks

C24x 3-8
C28x 3-27

 analog-to-digital converter
See ADC blocks

applications
TI C2000 1-2

Arctangent IQN block 3-7
asymmetric vs. symmetric waveforms 3-41

B
blocks

adding to model 1-23
recommendations 1-11

build model 1-12
build options 3-50

C
c2000lib startup 1-14
C24x ADC block 3-8
C24x CAN Receive block 3-10
C24x CAN Transmit block 3-12
C24x GPIO Digital Input block 3-14
C24x PWM block 3-20
C24x QEP block 3-25, 3-45
C24xGPIO Digital Output block 3-17
C28x ADC block 3-27
C28x eCAN Receive block 3-30
C28x eCAN Transmit block 3-32
C28x GPIO DIgital Input block 3-34
C28x GPIO Digital Output block 3-37
C28x PWM block 3-40

CAN/eCAN Receive blocks
C24x 3-10
C28x 3-30

CAN/eCAN timing 3-54
CAN/eCAN Transmit blocks

C24x 3-12
C28x 3-32

CCS
link options 3-53
See also Code Composer Studio

Clarke Transformation block 3-47
clock speed 1-8
Code Composer Studio 1-7

projects 1-27
code generation

options 3-53
overview 1-27

code optimization 2-7
compiler options 3-50
configuration default 1-7
 control area network

See CAN/eCAN
control logic 3-22
conversion

float to IQ number 3-58
IQ number to different IQ number 3-70
IQ number to float 3-67

CPU clock speed 1-8

D
data types

conversion 2-7
deadband

C24x PWM 3-42
C28x PWM 3-22

Index

Index-2

default build configuration 1-7
digital motor control

See DMC library
Division IQN block 3-49
DMC library

Clarke Transformation 3-47
Inverse Park Transformation 3-65
Park Tansformation 3-81
PID controller 3-83
Space Vector Generator 3-87
Speed Measurement 3-88

DSP board
target preferences options 3-53

duty ratios 3-87

E
event manager timer 3-20

F
F2812 eZdsp block 3-50
fixed-point numbers 2-3
Float to IQN block 3-58
floating-point numbers

convert to IQ number 3-58
four-quadrant arctangent 3-7
Fractional part IQN block 3-59
Fractional part IQN x int32 block 3-60
From Memory block 3-61

G
GPIO input 3-14, 3-34
GPIO output 3-17, 3-37

H
hardware 1-3

I
I/O 3-14, 3-17, 3-34, 3-37
Integer part IQN block 3-63
Integer part IQN x int32 block 3-64
Inverse Park Transformation block 3-65
IQ Math library 2-2

Absolute IQN block 3-6
Arctangent IQN block 3-7
building models 2-7
code optimization 2-7
common characteristics 2-2
Division IQN block 3-49
Float to IQN block 3-58
Fractional part IQN block 3-59
Fractional part IQN x int32 block 3-60
Integer part IQN block 3-63
Integer part IQN x int32 block 3-64
IQN to Float block 3-67
IQN x int32 block 3-68
IQN x IQN block 3-69
IQN1 to IQN2 block 3-70
IQN1 x IQN2 block 3-71
Magnitude IQN block 3-80
Q format notation 2-4
Saturate IQN block 3-86
Square Root IQN block 3-90
Trig Fcn IQN block 3-93

IQ numbers
convert from float 3-58
convert to different IQ 3-70
convert to float 3-67
fractional part 3-59
integer part 3-63

Index

Index-3

magnitude 3-80
mulitply by int32 fractional result 3-60
multiply 3-69
multiply by int32 3-68
multiply by int32 integer part 3-64
square root 3-90
trigonometric functions 3-93

IQN to Float block 3-67
IQN x int32 block 3-68
IQN x IQN block 3-69
IQN1 to IQN2 block 3-70
IQN1 x IQN2 block 3-71

L
LF2407 eZdsp block 3-72
linker options 3-51

M
Magnitude IQN block 3-80
mailbox 3-10
math blocks

See also IQ Math library
MathWorks software 1-4
messages

F2812 eZdsp 3-30
LF2401 eZdsp 3-10

model
add blocks 1-23
building overview 1-12
creation overview 1-10
IQmath library 2-7

multiplication
IQN x int32 3-68
IQN x int32 fractional part 3-60
IQN x int32 integer part 3-64

IQN x IQN 3-69
IQN1 x IQN2 3-71

O
operating system requirements 1-3
optimization code 2-7

P
Park Transformation block 3-81
phase conversion 3-47
PID controller 3-83
prescaler 3-22
projects

CCS 1-27
pulse wave modulators

See PWM blocks
pulse width 3-21
PWM blocks

C24x 3-20
C28x 3-40
control logic 3-22
deadband 3-22

Q
Q format 2-4
quadrature encoder pulse circuit 3-25, 3-45

R
Real Time Workshop build options

F2812 eZdsp 3-74
LF2407 eZdsp 3-52

receive 3-10
reference frame conversion 3-65, 3-81

Index

Index-4

reset 1-13
runtime options 3-52

S
sample time

F2812 eZdsp 3-30
LF2407 eZdsp 3-10
maximum 1-8

Saturate IQN block 3-86
scheduling 1-8
setting up hardware 1-3
signed fixed-point numbers 2-3
simulation parameters 1-12

automatic 1-17
software requirements 1-4
Space Vector Generator block 3-87
Speed Measurement block 3-88
Square Root IQN block 3-90
startup c2000lib 1-14

T
target configuration

example 3-50
LF2407 eZdsp 3-72

target model creation 1-10
target preferences

compiler options 3-50
DSP board options 3-53
linker options 3-51

Target Preferences blocks
F2812 eZdsp 3-50
LF2407 eZdsp 3-72

TI software 1-4
timing 1-8

CAN/eCAN 3-54

To Memory block 3-91
transmit 3-12
Trig Fcn IQN block 3-93

W
waveforms 3-41

	Getting Started
	What Is the Embedded Target for the TI TMS320C2000 DSP Platform?
	Suitable Applications

	Setting Up and Configuring
	Platform Requirements — Hardware and Operating System
	Supported Hardware for Targets
	Software Requirements
	Verifying the Configuration

	Embedded Target for TI C2000 and Code Composer Studio
	Default Project Configuration

	Scheduling and Timing
	Overview of Creating Models for Targeting
	Online Help
	Notes About Selecting Blocks for Your Models
	Setting Simulation Configuration Parameters
	Building Your Model

	Using the c2000lib Blockset
	Hardware Setup
	Starting the c2000lib Library
	Setting Up the Model
	Adding Blocks to the Model
	Generating Code from the Model
	Creating Code Composer Studio Projects Without Loading

	Using the IQmath Library
	About the IQmath�Library
	Common Characteristics

	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Q Format Notation

	Building Models
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Block Reference
	Blocks — Categorical List
	C2400 DSP Chip Support Library (c2400dspchiplib)
	C2800 DSP Chip Support Library (c2800dspchiplib)
	Target Preferences Library (c2000tgtpreflib)
	C28x Digital Motor Control Library (c28xdmclib)
	C28x IQmath Library (tiiqmathlib)

	Blocks — Alphabetical List
	Absolute IQN
	Arctangent IQN
	C24x ADC
	C24x CAN Receive
	C24x CAN Transmit
	C24x GPIO Digital Input
	C24x GPIO Digital Output
	C24x PWM
	C24x QEP
	C28x ADC
	C28x eCAN Receive
	C28x eCAN Transmit
	C28x GPIO Digital Input
	C28x GPIO Digital Output
	C28x PWM
	C28x QEP
	Clarke Transformation
	Division IQN
	F2812 eZdsp
	Float to IQN
	Fractional part IQN
	Fractional part IQN x int32
	From Memory
	Integer part IQN
	Integer part IQN x int32
	Inverse Park Transformation
	IQN to Float
	IQN x int32
	IQN x IQN
	IQN1 to IQN2
	IQN1 x IQN2
	LF2407 eZdsp
	Magnitude IQN
	Park Transformation
	PID Controller
	Saturate IQN
	Space Vector Generator
	Speed Measurement
	Square Root IQN
	To Memory
	Trig Fcn IQN

	Index

