Embedded Target for the
T1 TMS320C2000™ DSP Platform

For Use with Real-Time Workshop®

Modeling
Simulation

Implementation

User’s Guide --.‘\The MathWorks

Version 1

X L8

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
508-647-7000

508-647-7001

The MathWorks, Inc.

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information
Phone

Fax

Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for the TI TMS320C2000 DSP Platform User’s Guide
© COPYRIGHT 2003 - 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

New for Version 1.0 (Release 13SP1+)
Revised for Version 1.1 (Release 14)

Printing History: November 2003 Online only
June 2004 Online only

Getting Started

1]

What Is the Embedded Target for the TI TMS320C2000

DSP Platform? 1-2
Suitable Applications 1-2
Setting Up and Configuring 1-3
Platform Requirements — Hardware and Operating System . 1-3
Supported Hardware for Targets 1-3
Software Requirements 14
Verifying the Configuration 1-5

Embedded Target for TI C2000 and

Code Composer Studio 1-7
Default Project Configuration 1-7
Schedulingand Timing 1-8
Overview of Creating Models for Targeting 1-10
OnlineHelp 1-10
Notes About Selecting Blocks for Your Models 1-11
Setting Simulation Configuration Parameters 1-12
Building Your Model 1-12
Using the c2000lib Blockset 1-14
Hardware Setup 1-14
Starting the c2000lib Library 1-14
Setting Upthe Model 1-16
Adding Blocks tothe Model 1-23
Generating Code from the Model 1-27

Creating Code Composer Studio Projects Without Loading .. 1-27

Contents

ii

Using the IQmath Library

2

About the IQmath Library 2-2
Common Characteristics 2-2
Fixed-Point Numbers 2-3
Signed Fixed-Point Numbers 2-3
Q Format Notation 000, 2-4
BuildingModels 2-7
Converting Data Typescuuiiiiiiiinnnnn.n. 2.7
Using Sourcesand Sinks 2-7
Choosing Blocks to Optimize Code 2-7

Block Reference

3|

Blocks — Categorical List 3-2
C2400 DSP Chip Support Library (c2400dspchiplib) 3-2
C2800 DSP Chip Support Library (c2800dspchiplib) 3-2
Target Preferences Library (c2000tgtpreflib) 3-3
C28x Digital Motor Control Library (c28xdmclib) 3-3
C28x IQmath Library (tiigmathlib) 34

Blocks — Alphabetical List 3-5

Index

Contents

Getting Started

This chapter describes how to use the Embedded Target for TT C2000 DSP to create and execute
applications on Texas Instruments C2000 development boards. To use the targeting software, you
should be familiar with using Simulink to create models and with the basic concepts of Real-Time
Workshop automatic code generation. To read more about Real-Time Workshop, refer to your
Real-Time Workshop documentation.

What Is the Embedded Target for the Introduces the Embedded Target for TI C2000 DSP and
TT TMS320C2000 DSP Platform? describes some of its features and supported hardware
(p. 1-2)

Setting Up and Configuring (p. 1-3) Describes the software and hardware required to use the
Embedded Target for the TI TMS320C2000 DSP Platform
and how to set them up

Embedded Target for TI C2000 and Information about Code Composer Studio
Code Composer Studio (p. 1-7)

Scheduling and Timing (p. 1-8) Information about C2000 scheduling
Overview of Creating Models for Summary of steps required to create models for your
Targeting (p. 1-10) target

Using the ¢2000lib Blockset (p. 1-14) Example of creating a model and targeting hardware

1 Geii ng Started

What Is the Embedded Target for the TI TMS320C2000 DSP

Platform?

The Embedded Target for the TI TMS320C2000™ DSP Platform integrates
Simulink® and MATLAB® with Texas Instruments eXpressDSP™ tools. You
can use this product to develop and validate digital signal processing and
control designs from concept through code. The Embedded Target for the TI
TMS320C2000 DSP Platform uses C code generated by Real-Time Workshop®
and your TI development tools to generate a C language real-time
implementation of your Simulink model. Real-Time Workshop builds a Code
Composer Studio® project from the C code. You can compile, link, download,
and execute the generated code on an eZdsp™ DSP board from Spectrum
Digital.

Suitable Applications

The Embedded Target for the TI TMS320C2000 DSP Platform enables you to
develop digital signal processing and control applications. Some important
characteristics of the applications that you can develop are

® Fixed-point arithmetic

¢ Single rate

® Multirate

® Adaptive

® Frame based

Setting Up and Configuring

Setting Up and Configuring

Platform Requirements — Hardware and Operating
System

To run the Embedded Target for the TI TMS320C2000 DSP Platform, your
host PC must meet the following hardware configuration:

¢ Intel Pentium or Intel Pentium processor-compatible PC

* 64 MB RAM (128 MB recommended)

® 20 MB hard disk space available after installing MATLAB
¢ Color monitor

¢ One parallel printer port or one USB port to connect your target board to
your PC

¢ CD-ROM drive
® Windows NT 4.0 Server or Workstation, Windows 2000, or Windows XP

You may need additional hardware, such as signal sources and generators,
oscilloscopes or signal display systems, and assorted cables to test and evaluate
your application on your hardware.

Supported Hardware for Targets
The Embedded Target for TI C2000 DSP supports the following boards:

® TMS320F2812 eZdsp DSK — the F2812eZdsp DSP Starter Kit
e TMS320LF2407 eZdsp DSK — the LF2407eZdsp DSP Starter Kit

The above DSP Starter Kits (DSKs) help developers evaluate digital signal
processing applications for the Texas Instruments DSP chips. You can create,
test, and deploy your processing software and algorithms on the target
processor without the difficulties inherent in starting with the digital signal
processor itself and building the support hardware to test the application on
the processor. Instead, the development board provides the input hardware,
output hardware, timing circuitry, memory, and power for the digital signal
processor. Texas Instruments provides the software tools, such as the C
compiler, linker, assembler, and integrated development environment, for PC
users to develop, download, and test their algorithms and applications on the
processor.

1 Geii ng Started

Refer to the documentation provided with your hardware for information on
setting up and testing your target board.

Note You do not need to change any jumpers from their factory defaults on
either the LF2407 or F2812 target board.

Software Requirements

MathWorks Software

For up-to-date information about other MathWorks software you need to use
the Embedded Target for the TI TMS320C2000 DSP Platform, refer to the
MathWorks Web site — http://www.mathworks.com. Check the Products area
for the Embedded Target for the TI TMS320C2000 DSP Platform.

For information about the software required to use the Link for Code Composer
Studio Development Tools, refer to the Products area of the MathWorks Web
site — http://www.mathworks.com.

Texas Instruments Software

In addition to the required software from The MathWorks, Embedded Target
for the TI TMS320C2000 DSP Platform requires that you install the Texas
Instruments development tools and software listed in the following table.
Installing Code Composer Studio IDE Version 2.12 or 2.2 for the C28x series
installs the software shown.

Required Tl Software for Targeting Your Tl C2000 Hardware

Installed Product Additional Information

Assembler Creates object code (.obj) for C2000 boards from
assembly code

Compiler Compiles C code from the blocks in Simulink
models into object code (.obj). As a byproduct of the
compilation process, you get assembly code (.asm) as
well.

Setting Up and Configuring

Required Tl Software for Targeting Your Tl 2000 Hardware (Continued)

Installed Product Additional Information

Linker Combines various input files, such as object files
and libraries

Code Composer Texas Instruments integrated development

Studio environment (IDE) that provides code debugging
and development tools

TI C2000 Various tools for developing applications for the

miscellaneous C2000 digital signal processor family

utilities

Code Composer Program you use to configure your CCS installation

Setup Utility by selecting your target boards or simulator

In addition to the TI software, you need one or more TMS320F2812 eZdsp DSP

Starter Kits or TMS320LF2407 eZdsp DSP Starter Kits from Spectrum Digital.

Verifying the Configuration

To determine whether the Embedded Target for the TI TMS320C2000 DSP
Platform is installed on your system, type this command at the MATLAB
prompt.

c20001ib

When you enter this command, MATLAB displays the C2000 block library
containing the following libraries that comprise the C2000 library:

e C2800 DSP Core Support

e C2400 DSP Core Support

® Target Preferences

® C28x IQmath library

* C28x DMC library

If you do not see the listed libraries, or MATLAB does not recognize the
command, you need to install the Embedded Target for the TI TMS320C2000

DSP Platform. Without the software, you cannot use Simulink and Real-Time
Workshop to develop applications targeted to the TI boards.

1 Geii ng Started

1-6

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the Products area at the MathWorks
Web site (http://www.mathworks.com).

To verify that Code Composer Studio (CCS) is installed on your machine, enter

ccsboardinfo

at the MATLAB command line. With CCS installed and configured, MATLAB
returns information about the boards that CCS recognizes on your machine, in
a form similar to the following listing.

Board Board Proc Processor Processor
Num Name Num Name Type

1 F2812 Simulator 0 CPU TMS320C28xXx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For the
Embedded Target for the TI TMS320C2000 DSP Platform to operate with CCS,
the CCS IDE must be able to run on its own.

Note For any model to work in the targeting environment, you must select
the discrete-time solver in the Solver options pane of the Simulink
Configuration Parameters dialog box. Targeting does not work with
continuous-time solvers.

Embedded Target for TI C2000 and Code Composer Studio

Embedded Target for TI C2000 and Code Composer Studio

Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE) . Used in combination with your Embedded Target for TI C2000 DSP and
Real-Time Workshop, CCS provides an integrated environment that, once
installed, requires no coding.

Executing code generated from Real-Time Workshop on a particular target
requires that Real-Time Workshop generate target code that is tailored to the
specific hardware target. Target-specific code includes I/O device drivers and
interrupt service routines (ISRs). Generated source code must be compiled and
linked using CCS so that it can be loaded and executed on a TI DSP. To help
you to build an executable, the Embedded Target for TI C2000 DSP uses the
Link for Code Composer Studio to start the code building process within CCS.
Once you download your executable to your target and run it, the code runs
wholly on the target. You can access the running process only from the CCS
debugging tools or across a link using Link for Code Composer Studio
Development Tools.

Default Project Configuration

CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to all files in your project. For
more information about the build options, refer to your TI documentation. The
models you build with the Embedded Target for TI C2000 DSP use a custom
configuration that provides a third combination of build and optimization
settings — custom_MW.

Default Build Options in the custom_MW Configuration

The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options. custom MW uses
Function(-02) for the compiler optimization level.

Your CCS documentation provides complete details on the compiler build
options. You can change the individual settings or the build configuration
within CCS.

1 Geii ng Started

Scheduling and Timing

A timer interrupt is used to run generated code in real time on the C2000 DSP.
Each iteration of the model solver is run after an interrupt has been posted and
serviced by an interrupt service routine (ISR). The code generated for the C28x
uses CPU_timer0. The code generated for the C24x uses an Event Manager (EV)
timer, which you can select.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set up
to ensure the desired rate as follows:

Timer Period

((CPU Clock Speed))
TimerClockPrescaler

Base Rate Sample Time =

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812 or 216-1 for the LF2407), the CPU clock speed and, for the
LF2407, the TimerClockPrescaler setting in the appropriate Target
Preferences block. The CPU clock speed for the LF2407 is 40 MHz and for the
F2812 it is 150 MHz.

Maximum Sample Times

TimerClockPrescaler C24x Maximum C28x Maximum

Setting Sample Time Sample Time
(seconds) (seconds)

1 0.0016 28.63

2 0.0032 N/A

4 0.0065 N/A

8 0.0131 N/A

16 0.0262 N/A

32 0.0524 N/A

Scheduling and Timing

Maximum Sample Times (Continued)

TimerClockPrescaler €24 x Maximum C28x Maximum

Setting Sample Time Sample Time
(seconds) (seconds)

64 0.1048 N/A

128 0.2097 N/A

1 Geii ng Started

Overview of Creating Models for Targeting

After you have installed the supported development board, start MATLAB. At
the MATLAB command prompt, type

€c200011ib

This opens the c20001ib Simulink blockset that includes libraries containing
blocks predefined for C2000 input and output devices. As needed, add the
blocks to your model. See “Using the c2000lib Blockset” on page 1-14 for an
example of how to use this library.

Create your real-time model for your application the way you create any other
Simulink model — by using standard blocks and C-MEX S-functions. Select
blocks to build your model from the following sources:

® Appropriate Target Preferences library block, to set preferences for your
target and application

® From the appropriate libraries in the c20001ib block library, to handle input
and output functions for your target hardware

¢ From Real-Time Workshop
® From Simulink Fixed Point
® Discrete time blocks from Simulink

* From any other blockset that meets your needs and operates in the discrete
time domain

Online Help

To get general help for using the Embedded Target for the TI TMS320C2000
DSP Platform, use the help feature in MATLAB. At the command prompt, type

help tic2000
to get a list of the functions and block libraries included in the Embedded
Target for the TI TMS320C2000 DSP Platform. Or select Help ->Full Product

Family Help from the menu bar in the MATLAB desktop. When you see the
Table of Contents in Help, select Embedded Target for the TT C2000 DSP.

1-10

Overview of Creating Models for Targeting

Notes About Selecting Blocks for Your Models

Many blocks in the blocksets communicate with your MATLAB workspace.
These blocks also generate code, but they do not work on the target as they do
on your desktop — in general, they slow your signal processing application
without adding instrumentation value.

For this reason, The MathWorks recommends that you avoid using certain
blocks, such as the Scope block and some source and sink blocks, in Simulink
models that you use on Embedded Target for TI C2000 DSP targets. The next
table presents the blocks you should not use in your target models.

Block Name/Category

Library

Scope

To Workspace

From Workspace
Spectrum Scope

To File

From File

Triggered to Workspace
Signal To Workspace
Signal From Workspace

Triggered Signal From
Workspace

To Wave Device
From Wave Dvice
To Wave File
From Wave File

Simulink, Signal Processing Blockset
Simulink

Simulink

Signal Processing Blockset

Simulink

Simulink

Signal Processing Blockset

Signal Processing Blockset

Signal Processing Blockset

Signal Processing Blockset

Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset
Signal Processing Blockset

1-11

1 Geii ng Started

1-12

Setting Simulation Configuration Parameters

To set the simulation parameters manually, with your model open, select
Configuration Parameters from the Simation option. From this dialog, select
Real-Time Workshop. You must specify the appropriate version of the system
target file and template makefile. For the Embedded Target for the T
TMS320C2000™ DSP Platform, in the Real-Time Workshop pane of the
dialog, specify

ti C2000_grt.tlc

or, optionally, select

ti_C2000_ert.tlc

to select the correct target file or click Browse and select from the list of
targets. The associated template filename is automatically filled in.

A Generic Real-Time (GRT) target is the target configuration that generates
model code for a real-time system as if the resulting code was going to be
executed on your workstation. An Embedded Real-Time (ERT) target is the
target configuration that generates model code for execution on an
independent embedded real-time system. This option requires Real-Time
Workshop Embedded Coder.

You must also specify discrete time by selecting Fixed-step and discrete (no
continuous states) from the Solver panel of the Configuration Parameters
dialog.

When you drag a Target Preferences block into your model, you are given the
option to set basic simulation parameters automatically. Note that this option
does not appear if the Configuration Parameters dialog is open when you
drag the Target Preferences block into the model.

Building Your Model

With this configuration, you can generate a real-time executable and download
it your TI development board by clicking Build on the Real-Time Workshop
pane. Real-Time Workshop automatically generates C code and inserts the I/O
device drivers as specified by the hardware blocks in your block diagram, if
any. These device drivers are inserted in the generated C code as inlined
S-functions. For information about inlining S-functions, refer to your target
language compiler documentation. For a complete discussion of S-functions,
refer to your documentation about writing S-functions.

Overview of Creating Models for Targeting

Note To build, load, and run code successfully on your target board,
MATLAB must be able to locate that board in your system configuration.
Make sure that the Board Name in your Code Composer Studio setup and the
DSPBoardLabel in the Target Preference Block in your model match exactly.

During the same build operation, block parameter dialog entries are combined
into a project file for CCS for your TI C2000 board. If you selected the Build
and execute build action in the Target Preferences block, your makefile
invokes the TI cross-compiler to build an executable file that is automatically
downloaded via the parallel port to your target. After downloading the
executable file to the target, the build process runs the file on the board’s DSP.

Note After using the runtime Build option to generate and build code for
your application, you must perform the following reset sequence before you
can run that code on your board. If you want to rerun your application
manually once it has been generated, you must also use this procedure.

F2812 eZdsp Reset Sequence
1 Reset the board CPU
2 Load your code onto the target

3 Run your code on the target

LF2407 eZdsp Reset Sequence

1 Load your code onto the target
2 Reset the board CPU

3 Run your code on the target

1-13

1 Geii ng Started

Using the ¢2000lib Blockset

1-14

This section uses an example to demonstrate how to create a Simulink model
that uses the Embedded Target for TI C2000 DSP blocks to target your board.
The example creates a model that performs PWM duty cycle control via pulse
width change. It uses the C2812 ADC block to sample an analog voltage and
the C2812 PWM block to generate a pulse waveform. The analog voltage
controls the duty cycle of the PWM and you can observe the duty cycle change
on the oscilloscope. This model is also provided in the Demos library. Note that
the model in the Demos library also includes a model simulation.

Hardware Setup
The following hardware is needed for this example:

® Spectrum Digital eZdsp F2812
® Function generator

® Oscilloscope and probes

Connect the hardware as follows:

1 Connect the function generator output to the ADC input ADCINAO on the
eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of the
oscilloscope.

Starting the ¢2000lib Library
At the MATLAB prompt, type

€c20001ib

to open the c20001ib library blockset, which contains libraries of blocks
designed for targeting your board.

Using the c2000lib Blockset

ZlLibrary: c2ooolib

File Edit ‘iew Formab Help

=101 %]

2800 DEF C2400 DSP
Chip Support Chip Support

C:28x% [Amath C28x DM
Library Library

2000 Target
Freferences

Infa

Demas

Block Libraries for

Embedded Target for Texas Instruments{tm})
TMS320C2000 DSP Platform
Copyright 2003-2004 The MathWorks, Inc.

The libraries are

® C2800 DSP Core Support (c2800dsplib) — Blocks to configure the codec on
the F2812 eZdsp DSK or on the F2812 DSP

® C2400 DSP Core Support (c2400dsplib) — Blocks to configure the codec on
the LF2407 eZdsp DSK or on the LF2407 DSP

e C28x IQMath Library (tiigmathlib) — Fixed-point math blocks for use with

C28x targets

® C28x DMC Library (c28xdmclib) — Fixed-point math blocks for digital
motor control with C28x DSPs

¢ Target Preferences (c2000tgtpreflib) — Blocks to specify target
preferences and options. You do not connect this block to any other block in

your model.

1-15

1 Geii ng Started

1-16

¢ Info block — Online help
¢ Demos block — Demos window

For more information on each block, refer to its reference page.

Setting Up the Model

Preliminary tasks for setting up a new model include adding a Target
Preferences block, setting or verifying Target Preferences, and setting the
simulation parameters.

1 Select New from the File menu to create a new Simulink model.
2 Double-click the Target Preferences library in ¢2000lib to open it.

3 Drag the F2812 eZdsp block into your new model.

F2812 eZdsp

The following dialog appears, asking if you want preferences to be set
automatically.

Using the c2000lib Blockset

) Initialize |

Target Preference Blocks for Embedded Target for Tl 2000 DSP has been
added ta the model. Do you want ta initialize the simulation parameters

pertinent to thig target to their default gettings?

ez Mo |

Click Yes to allow automatic setup. The following Simulation ->
Configuration Parameters are set:

Panel Field Setting

Solver Stop time inf

Solver Type Fixed-step
discrete

Data Save to workspace - Time off

Import/Export

Data Save to workspace - Output off

Import/Export

Hardware Device type TI C2000

Implementation

Real-Time Target configuration - System ti_c2000_grt.tlc

Workshop target file

Real-Time Target configuration - ti _c2000_grt.tmf

Workshop Template makefile

The default Target configuration - System target file is ti_c2000.grt.tlc
because you need to purchase and install the optional Real-Time Workshop
Embedded Coder to use the ti_c2000 ert.tlc.

1-17

1 Geii ng Started

1-18

Note One Target Preference block must be in each target model at the top
level. It does not connect to any other blocks, but stands alone to set the target
preferences for the model.

Select Configuration Parameters from the Simulation menu to verify and
set the simulation parameters for this model. Parameters you set in this
dialog belong to the model you are building. They are saved with the model
and stored in the model file. Refer to your Simulink documentation for
information on the Configuration Parameters dialog.

Use the Real-Time Workshop pane of the Configuration Parameters
dialog to set options for the real-time model. Refer to your Real-Time
Workshop documentation for detailed information on the Real-Time
Workshop pane options.

E! Configuration Parameters: untitled/Configuration e |

Select:

- Solver

- Data Import/E=port
- Olptimization

[=]- Diagnostics

- Sample Time
- [ata Integrity
- Corrersion

- Connectivity

- Campatibility

- Model R eferencing
ardware Implementation
odel Referencing

Comments
- Sumbols
- Cugtamn Code
- Debug

—Target selection

R svstem target file: Iti_c:EUDU_grt.tIc Browse ... |

D escription:

—Documentation

[~ Generate HTML report

= Launch report after code generation completes

—Build proce:

TLC options: I

Make command: |make_rtw

Template makefile: |ti_c2DDD_grt.tmf

I™ Generate code arly Build |

oK. I Cancel Help Lpply

Using the c2000lib Blockset

* RTW system target file. Clicking Browse opens the Target File Browser
where you select ti_c2000 grt.tlc or ti c2000 ert.tlc. When you select
your target configuration, Real-Time Workshop chooses the appropriate
system target file, template makefile, and make command. You can also enter
the target configuration filename, and Real-Time Workshop will fill in the
Template makefile and Make command selections.

® Make command. When you generate code from your digital signal
processing application, use the standard command make rtw as the Make
command. On Configuration in the Target configuration category, enter
make_rtw for the Make command.

* Template makefile. Set the Template makefile option to
ti_c2000_grt.tmforti_c2000_ert.tmf when you build your application for
the C2000 target. If the template makefile shown in the option is not the one
for the selected System target file, click Browse to open the list of available
system target files and select the correct file from the list. Real-Time
Workshop then selects the appropriate template makefile.

® Generate code only. This option does not apply to targeting with the
Embedded Target for TI C2000 DSP. To generate source code without
building and executing the code on your target, in the Target Preference
BuildOptions — RunTimeOptions for BuildAction, select Generate code
only.

For all other Real-Time Workshop options, leave the default values for this

example.

1-19

1 Geii ng Started

4 Set the Target Preferences by double-clicking on the F2812 eZdsp block and
adjust these parameters. The default values are also shown in the figure
below. For descriptions of these fields, see the F2812 eZdsp reference page.

Build Options

Subfield Field Setting

Compiler Options CompilerVerbosity Verbose
KeepASMFiles False
OptimizationLevel Function(-02)

SymbolicDebugging Yes

Linker Options CreateMAPFile True
KeepOBdJFiles True
LinkerCMDFile Full memory_map

RunTime Options BuildAction Build and_execute
OverrunAction Continue

CCSLink Options

Field Setting

CCSHandleName CCS_Obj

ExportCCSHandle True

CodeGeneration Options

Subfield Field Setting

Scheduler Timer CPU_timer0

TimerClockPrescaler 1

1-20

Using the c2000lib Blockset

DSPBoard Options

Subfield Field Setting

DSP Board Label DSPBoardLabel F2812 PP Emulator
(see Note below)

DSP Chip DSPChipLabel TI TMS320C2812

eCAN BitRatePrescaler 10

EnhancedCANMode True

SAM Sample one_time
SBJ Only falling_edges
SIJW 2

SelfTestMode False

TSEG1 8

TSEG2 6

Note Ifthe board label in your Code Composer Studio setup is different than
the default DSP Board Label shown in the Target Preferences block, you can
change the default setting. This would assure that whenever you drag a
Target Preferences block into a new model, the DSP Board Label of your
model will match the label in your Code Composer Studio setup.

Open the C2000 Target Preferences library. Double-click on the approprate
Target Preferences block. Click on DSP Board and change the text in the DSP
Board Label right column to the desired string. Click OK to close the Target
Preferences block and then close the library to save your change.

1-21

1 Geii ng Started

1-22

<) DSPTGTPKG Target Preferences Setup

= BuildOptions
- Compilerdptions
— Compilerverbhosity
— KeephAShFiles
— OptimizationLevel
L SymboalicCebudging
= LinkerOptions
— CreateMAFFile
— KeepOBJFiles
— LinkerCGMDFile
= RunTimeOptions
— BuildAction
L— OwerrunAction
F— CCELink
tCCSHandleName
ExpotticCEHandle
= CodeGeneration
é—Scheduler
Timer
= DEFBoard
DSPBoardLabel
DEPChip
DSPChipLabel
2CAN
— BitRateFrescaler
— EnhancedCANMade
— SAM
— SBG
— S
— SelfTestMaode
— TSEG1
- TEEG2

i =101 x|
CEPTotPky. BuildOptions
DEPTotPky.Compilerdptio
:I\-ferbnse
iIFalse
:IFunu:tinn(—nQ)
:IYES
CEPTotPky. LinkerOptions
@True
WTrue

:IFull_memDry_map
CEPTotPky. RunTimeDptio

:IEIuiId_and_execute

:ICnntinue
DSPTatPky.CCSLink
CCE_Ohj

@True
DEPTotPky.C2800CodeGe
DSPTgtPky.C28005chedu

| cPU_timero
DSPTatPky.eZdspF28120
F2812 PP Emulatar
DSPTatPky.C2812DSFPChi

:ITI TME320C2812
DSPTotPky.eCAN
10

@True

:ISample_one_time

:IOnIy_falIing_edges

>z

iIFalse

>

~|s

_ox |

Using the c2000lib Blockset

Adding Blocks to the Model

1 Double-click the C2800 DSP Chip Support Library to open it.

[ZlLibrary: c2800dspchiplib 1O =]
File Edit ‘iew Formab Help
C2800 DSP
Chip Support Library
From To
Memony hlemory
C28x From Memons C28x To Memony
C20w ADC T2 Pk
C20w ADC T2 Pk
Mailbox: 0 1) Mailbax: 1
C28wx eCAN hisg C28x e CAN
Receive hzg Transmit
T8 aCAN Receive C28x eCAMN Transmit
C28x= P10 DI C28x GRI0 DO
C28=F10_D1 C2exEPI0_D0O
C28x= QEF
C28=0EF

2 Dragthe C28x ADC block into your model. Double-click the ADC block in the
model and set the Module to A, select only ADCINAO, and enter a Sample
time of 64/80000. Refer to the C28x ADC reference page for information on
these fields.

1-23

1 Geii ng Started

—C28x ADC [mask] (link)

Configures the ADC ta cutput a constant stream of data collected from the ADC ping
on the c28x DSP.

—Parameters

Mocule: [EEY— -

¥ ADCINAD
[~ ADCINAT
[ADCINAZ
[ADCINAZ
[~ ADCINAS
[ADCINAG
[ADCINAG
[~ ADCINAT
Sample time:
|B4/80000

Ok Cancel | Help | Apply |

3 Drag the C28x PWM block into your model. Double-click the PWM block in
the model and set the following parameters. Refer to the C28x PWM
reference page for information on these fields.

Field Parameter

Module A

Waveform period source Specify via dialog
Waveform period 64000

Waveform type Asymmetric

Enable PWM1/PWM2 selected

Pulse width source Input port

Show additional parameters selected

1-24

Using the c2000lib Blockset

Field

Parameter

PWM1 control logic

PWMZ2 control logic

Use deadband for PWM1/PWM2
Deadband prescaler

Deadband period

ADC start event

Active high
Active low
selected

16

12

Period interrupt

E Block Parameters: C28x PWM

2%

—C28% P [mask)] [link]

Configures the Event Manager of the C28x DSP to generate P waveforms,
—Parameters

rhocuil: A -

W aveform peniod source: | Specify via dialog LI

W aveform period [clock cpcles):

|B4000

W aveform type: IAsymmetric ﬂ

[# Enable Pyl /Fid2

Pulze width source: I Iput part ﬂ

I™ Enable Pt 3/Fwihdd

I™ Enable Pyb5/FwiE

v/ Show additional parameters --------

Fraitd 1 control logic: I Active high ﬂ

Fritd 2 control logic: I.&ctive low ﬂ

¥ Use deadband for Pashd 1Pt 2

Dieadband prescaler: I 16 j

[eadband period: I 12 j

ADC start event I Perind interpt ﬂ

ak. LCancel

Help | Apply |

1-25

1 Geii ng Started

4 Type Simulink at the MATLAB command line to start the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click on the Gain block in the model and set the
following parameters.

Field Parameter

Gain 30

Multiplication Element-wise (K. *u)
Sample time -1

Output data type mode Specify via dialog
Output data type uint(16)

Round integer calculations toward Floor

Parameter data type mode Same as input

Gain
’7 Element-wize gain [v = K."u] or matrix gain [y = Kooy = uk)],

ISignaI data types I Parameter data types I

é;ln:‘
a0

Multiplication: I Element-wize(k. *u) LI

Sample time [-1 far inherited):

f1

ak LCancel Help Apply

1-26

Using the c2000lib Blockset

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block as shown.

C2gx ADC

C28x ADC

i1 C28= Pt

Zaint

C28: Pk

Generating Code from the Model

This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop, refer to
your Real-Time Workshop documentation.

EOgd
R B=
{ S b= 1)

F2212 aldzp

You start the automatic code generation process from the Simulink model
window by clicking Build in the Real-Time Workshop pane of the
Configuration Parameters dialog. Other ways of starting the code generation
process are by using the Build all button on the toolbar of your model, or by
using the keyboard shortcut, Ctrl+B, while your model is open and in focus.

The code building process consists of these tasks:

1 Real-Time Workshop invokes the function make_rtw to start the Real-Time
Workshop build procedure for a block diagram. make_rtw invokes the Target
Language Compiler to generate the code and then invokes the
language-specific make procedure.

2 gmake builds file modelname.out. Depending on the build options you select
in the Simulation Parameters dialog, gmake can initiate the sequence that
downloads and executes the model on your TI target board.

Creating Code Composer Studio Projects Without

Loading

To create projects in CCS without loading files to your target, follow these

steps:

1 In the Real-Time Workshop pane in the Simulation Parameters dialog,
select ti_¢2000.t1lc as the system target file.

1-27

1 Geii ng Started

2 Select Create CCS Project for the BuildAction in the Target Preferences
block. Note that the Build and Build and_execute options create CCS
projects as well.

3 Set the other Target Preferences options, including those for CCSLink. On
the Real-Time Workshop pane of the Simulation Parameters dialog, click
Build to build your new CCS project.

Real-Time Workshop and the Embedded Target for TI C2000 DSP generate
all the files for your project in CCS and create a new project in the IDE. Your
new project is named for the model you built.

In CCS you see your project with the files in place in the directory tree.

1-28

Using the IQmath Library

About the IQmath Library (p. 2-2)
Fixed-Point Numbers (p. 2-3)

Building Models (p. 2-7)

Introduces the IQmath Library

Representation of fixed-point numbers in the
IQmath Library

Issues to consider when you build models with the
IQmath Library

2 Using the IQmath Library

About the IQmath Library

The blocks in the C28x IQmath Library correspond to functions in the Texas
Instruments C28x IQmath Library assembly-code library, which target the TI
C2800 family of digital signal processors. You can use these blocks to run
simulations by building models in Simulink before generating code. Once you
develop your model, you can invoke Real-Time Workshop to generate
equivalent code that is optimized to run on a C2000 DSP. During code
generation, each IQmath Library block in your model is mapped to its
corresponding TI IQmath Library assembly-code routine to create
target-optimized code.

The IQmath Library blocks generally input and output fixed-point data types.
The block reference pages discuss the data types accepted and produced by
each block in the library. “Fixed-Point Numbers” on page 2-3 gives a brief
overview of using fixed-point data types in Simulink. For a discussion of this
topic, including issues with scaling and precision when performing fixed-point
operations, refer to the Simulink Fixed Point documentation.

You can use IQmath Library blocks with certain core Simulink blocks, as well
as with certain blocks from Simulink Fixed Point. To learn more about creating
models that include both IQmath Library blocks and blocks from other
blocksets, refer to “Building Models” on page 2-7.

Common Characteristics

The following characteristics are common to all IQmath Library blocks:

e Sample times are inherited from driving blocks.
® Blocks are single rate.

® Parameters are not tunable.

e All blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, refer
to the “Block Reference” pages.

Fixed-Point Numbers

Fixed-Point Numbers

In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components

or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number (either
signed or unsigned) is shown below.

‘ bws—l ‘ bws—2 ’ | bS‘ b4 b3 ‘ b2’ bl ’ bO |
MSB LSB
Binary point
where

® b, is the ith binary digit.

® ws is the word size in bits.

® b, ._11s the location of the most significant (highest) bit (MSB).
® b, is the location of the least significant (lowest) bit (LSB).

¢ The binary point is shown four places to the left of the LSB. In this example,
therefore, the number is said to have four fractional bits, or a fraction length
of four.

Signed Fixed-Point Numbers

Signed binary fixed-point numbers are typically represented in one of three
ways:

® Sign/magnitude

® One’s complement

* Two’s complement

2-3

2 Using the IQmath Library

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a 1. For example, the two’s complement of 000101 is 111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the L.SB)

Q Format Notation

The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such as
addition or subtraction, hardware uses the same logic circuits regardless of the
value of the scale factor. In essence, the logic circuits have no knowledge of

a binary point. They perform signed or unsigned integer arithmetic — as if the
binary point is to the right of b(. Therefore, you determine the binary point.

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

® @ designates that the number is in Q format notation — the Texas
Instruments representation for signed fixed-point numbers.

® m is the number of bits used to designate the two’s complement integer
portion of the number.

® 1 is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is always designated as the sign bit.
Representing a signed fixed-point data type in Q format always requires
m+n+1 bits to account for the sign.

Example — Q.15

For example, a signed 16-bit number with n = 15 bits to the right of the binary
point is expressed as

Q0.15

2-4

Fixed-Point Numbers

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional
bits) = 16 bits total in the data type. In Q format notation, the m = 0 is often
implied, as in

Q.15

In Simulink Fixed Point, this data type is expressed as

sfrac16

or

sfix16_En15

In the Filter Design Toolbox, this data type is expressed as
[16 15]

Example — Q1.30

Multiplying two Q.15 numbers yields a product that is a signed 32-bit data type
with n = 30 bits to the right of the binary point. One bit is the designated sign
bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total
Therefore, this number is expressed as

Q1.30

In Simulink Fixed Point, this data type is expressed as

sfix32_En30

In the Filter Design Toolbox, this data type is expressed as
[32 30]

Example — Q-2.17

Consider a signed 16-bit number with a scaling of 2017, This requires n = 17
bits to the right of the binary point, meaning that the most significant bit is
a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two's complement number 1011. When this number is extended

2-5

2 Using the IQmath Library

to 7 bits with sign extension, the number becomes 1111101 and the value of the
number remains the same.

One bit is the designated sign bit, forcing m to be -2:
m+n+1 = -2+17+1 = 16 bits total
Therefore, this number is expressed as

Q-2.17

In Simulink Fixed Point, this data type is expressed as

sfix16_En17

In the Filter Design Toolbox, this data type is expressed as
[16 17]

Example — Q17.-2

Consider a signed 16-bit number with a scaling of 27(2) or 4. This means that
the binary point is implied to be 2 bits to the right of the 16 bits, or that there
are n = -2 bits to the right of the binary point. One bit must be the sign bit,
thereby forcing m to be 17:

m+n+1 = 174(-2)+1 = 16

Therefore, this number is expressed as
Q17.-2

In Simulink Fixed Point, this data type is expressed as
sfix16_E2

In the Filter Design Toolbox, this data type is expressed as
[16 -2]

Building Models

Building Models

You can use IQmath Library blocks in models along with certain core
Simulink, Simulink Fixed Point, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

Converting Data Types

As always, it is vital to make sure that any blocks you connect in a model have
compatible input and output data types. In most cases, IQmath Library blocks
handle only a limited number of specific data types. You can refer to any block
reference page in “Block Reference” for a discussion of the data types that the
block accepts and produces.

When you connect IQmath Library blocks and Simulink Fixed Point blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink Fixed Point block to match the data type of the IQmath Library
block. Many Simulink Fixed Point blocks allow you to set their data type and
scaling through inheritance from the driving block, or through
backpropagation from the next block. This can be a good way to set the data
type of a Simulink Fixed Point block to match a connected IQmath Library
block.

Some Signal Processing Blockset blocks and core Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to an IQmath Library block.

Using Sources and Sinks

The IQmath Library does not include source or sink blocks. Use source or sink
blocks from the core Simulink library or Simulink Fixed Point in your models
with IQmath Library blocks.

Choosing Blocks to Optimize Code

In some cases, blocks that perform similar functions appear in more than one
blockset. For example, both the IQmath Library and Simulink Fixed Point
have a Multiply block. When you are building a model to run on C2000 DSP,
choosing the block from the IQmath Library always yields better optimized
code. You can use a similar block from another library if it gives you

2 Using the IQmath Library

functionality that the IQmath Library block does not support, but you will
generate code that is less optimized.

Block Reference

Blocks — Categorical List (p. 3-2)

Blocks — Alphabetical List (p. 3-5)

Provides tables that list each block in the Embedded
Target for C2000 DSP by library

Lists each block in the Embedded Target for C2000 DSP
in alphabetical order

3 Block Reference

Blocks — Categorical List

C2400 DSP Chip Support Library (¢2400dspchiplib)

C24x ADC
C24x CAN Receive

C24x CAN Transmit

C24x GPIO Digital Input

C24x GPIO Digital Output

C24x PWM

C24x QEP

From Memory

To Memory

Configure analog-to-digital converters (ADC)

Configure an enhanced Control Area Network
receive mailbox

Configure an enhanced Control Area Network
transmit mailbox

Configure the general-purpose I/O pins for
digital input

Configure the general-purpose I/O pins for
digital output

Configure one or more pairs of pulse wave
modulators (PWMs)

Configure the quadrature encoder pulse
circuit

Retrieve data from a specific memory location
on the target

Write data to a specific memory location on
the target

C2800 DSP Chip Support Library (¢2800dspchiplib)

C28x ADC
C28x eCAN Receive

C28x eCAN Transmit

C28x GPIO Digital Input

Configure analog-to-digital converters (ADC)

Configure an enhanced Control Area Network
receive mailbox

Configure an enhanced Control Area Network
transmit mailbox

Configure the general-purpose I/O pins for
digital input

Blocks — Categorical List

C28x GPIO Digital Output

C28x PWM

C28x QEP

From Memory

To Memory

Configure the general-purpose I/O pins for
digital output

Configure one or more pairs of pulse wave
modulators (PWMs)

Configure the quadrature encoder pulse
circuit

Retrieve data from a specific memory location
on the target

Write data to a specific memory location on
the target

Target Preferences Library (¢2000tgtpreflib)

F2812 eZdsp
LF2407 eZdsp

Preferences for F2812 eZdsp DSK targets
Preferences for LF2407 eZdsp DSK targets

C28x Digital Motor Control Library (c28xdmclib)

Clarke Transformation

Inverse Park Transformation

Park Transformation

PID Controller

Space Vector Generator

Speed Measurement

Convert balanced three phase quantities into
balanced two phase quadrature quantities

Convert rotating reference fame vectors to a
two-phase stationary reference frame

Convert two-phase stationary system vectors
to rotating system vectors

Create a digital PID controller

Calculate duty ratios to generate stator
reference voltage

Calculate motor speed

3 Block Reference

C28x IQmath Library (tiigmathlib)

Absolute IQN
Arctangent IQN
Division IQN
Float to IQN

Fractional part IQN
Fractional part IQN x int32

Integer part IQN
Integer part IQN x int32

IQN to Float

IQN x int32
IQN x IQN

IQN1 to IQN2

IQN1 x IQN2

Magnitude IQN

Saturate IQN
Square Root IQN

Trig Fen IQN

Calculate absolute value
Calculate the four-quadrant arc tangent
Divide two IQ numbers

Convert a floating-point number to an 1Q
number

Return the fractional part of an IQ number

Return the fractional part of the result of
multiplying an IQ number and a long integer

Return the integer part of an IQ number

Return the integer part of the result of
multiplying an IQ number and a long integer

Convert an 1Q number to a floating-point
number

Multiply an IQ number and a long integer

Multiply two IQ numbers with the same Q
format

Convert an IQ number to a different Q
format

Multiply two IQ numbers with different Q
formats

Calculate the magnitude of two orthogonal
1Q numbers

Saturate an IQ number

Calculate the square root or inverse square
root of an IQ number

Calculate the sine, cosine, or tangent of an IQ
number

Blocks — Alphabetical List

Blocks — Alphabetical List

This section contains block reference pages listed alphabetically.

3-5

Absolute IQN

Purpose

Library

Description

IQmath

A w Y

IQNabs

Absolute IQN

Dialog Box

See Also

Calculate the absolute value of an IQ number
tiigmathlib in Embedded Target for TI C2000 DSP

This block computes the absolute value of an IQ number input. The output is
also an IQ number.

Block Parameters: Absolute IQN |
Absolute QN [mask] (link)

Thiz block computes the abzolute value of an [0 number. Both the input
and the output are signed 32-bit fixed-point numbers. The respective
|GMabs function iz selected based on the [value.

ak. I Cahicel Help Aoply

Arctangent IQN, Division IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fen IQN

Arctangent IQN
|

Purpose Calculate the four-quadrant arc tangent
Library tiigmathlib in Embedded Target for TI C2000 DSP
Description This block computes the four-quadrant arc tangent of the IQ number inputs

lOmath and produces I1Q number output.

NA O
M v Function — Type of arc tangent to calculate, either
3B

IQNatan2 ¢ atan2 — Compute the four-quadrant arc tangent with output in radians
Arctangent IQN with values between -pi and +pi.

® atan2PU — Compute the four-quadrant arc tangent per unit. If atan2 (B,A)
is greater than or equal to zero, atan2PU(B,A) = atan2(B,A)/2*pi.
Otherwise, atan2PU(B,A) = atan2(B,A)/2*pi+1. The output is in per-unit
radians with values from 0 to 2pi radians.

Dialog Box
|
—Arctangent AN [mazk] (link]

Thiz block computes the 4-guadrant arctangent for two G numbers given
in the zame [format. All inputs and outputs are signed 32-bit fised-point
rumberz. Depending on the selected option, the output of the block, iz
either in radians and varies from pi - to +pi or in per unit [PL] and waries
between -1 and + 1. The respective [N atan function is selected by the
input data type.

— Parameters

ak. I Cahicel Help Aoply

See Also Absolute IQN, Division IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

3-7

C24x ADC

Purpose Generate code to configure the C24x analog-to-digital converter
Library c2400dspchiplib in Embedded Target for TI C2000 DSP
Description The C24x ADC block configures the C24x ADC to perform analog-to-digital

conversion of signals connected to the selected ADC input pins. The ADC block
outputs digital values representing the analog input signal and stores the
converted values in the result register of your digital signal processor. You use
this block to capture and digitize analog signals from external sources such as
C24x ADC signal generators, frequency generators, or audio devices.

C24x ADC b

Triggering

The C24x ADC trigger mode depends on the internal setting of the Source
Start-of-Conversion (SOC) signal. The ADC is usually triggered by software at
the sample time intervals specified in the ADC block — this is unsychronized
mode.

In synchronized mode, the Event (EV) Manager associated with the same
module as the ADC triggers the ADC. In this case, the ADC is synchronized
with the PWM waveforms generated by the same EV unit via the ADC Start
Event signal setting. The ADC Start Event is set in the C24x PWM block. See
that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded-sequencer mode (see below).

Output
The output of the C24x ADC is a vector of uint16 values. The output values
are in the range 0 to 1023 because the C24x ADC is a 10-bit converter.

Modes

The C24x ADC block supports ADC operation in dual-sequencer and
cascaded-sequencer modes. In dual-sequencer mode, either Module A or Module
B can be used for the ADC block, and two ADC blocks are allowed in the model.
In cascaded-sequencer mode, both Module A and Module B are used for a single
ADC block.

C24x ADC

Dialog Box

See Also

Module — Specifies which DSP module to use:

* A — Displays the ADC channels in module A (ADCINAO through ADCINAT7)
® B — Displays the ADC channels in module B (ADCINBO through ADCINB7)

® A and B — Displays the ADC channels in both modules A and B (ADCINAO
through ADCINA7 and ADCINBO through ADCINB?7).

Use the check boxes to select the desired ADC channels.

Sample time — Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at which values are
read from the result registers. See “Scheduling and Timing” on page 1-8 for
additional information on timing.

To set different sample times for different groups of ADC channels, you must
add separate C24x ADC blocks to your model and set the desired sample times
for each block.

Block Parameters: CZ24x ADC k|

— C24z 8DC [maszk] (link)

Configures the ADC to output a congtant stream of data collected from the
ADC pins on the c24x DSP.

r— Parameters
o [-
v ADCIMNAD
[~ ADCIMAT
[~ ADCIMNAZ
[~ ADCIMNAZ
[~ ADCIMNA4
[~ ADCIMNAS
[~ ADCIMNAB
[~ ADCIMNAT

Sample time:

|1

QK. I Cancel Help Spply

C24x PWM

|

C24x CAN Receive

Purpose

Library

Description

Mailbox: 0 ()
C24x CAN
Receive Msg

C24x CAN Receive

3-10

Configure a CAN mailbox to receive messages from the CAN pins and output
received messages at specified sample intervals

c2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x Control Area Network (CAN) Receive block generates source code for
receiving CAN messages through a CAN mailbox. The CAN module on the DSP
chip provides serial communication capability and has six mailboxes — two
for receive, two for transmit, and two configurable for receive or transmit. The
C24x supports CAN data frames in standard or extended format.

The C24x CAN Receive block has up to two and, optionally, three output ports.

¢ The first output port is the function call port, and a function call subsystem
should be connected to this port. When a new message is received, this
subsystem is executed.

¢ The second output port is the message data port. The received data is output
in the form of a vector of elements of the selected data type. The length of the
vector is always 8 bytes.

¢ The third output port is optional and appears only if Output message length
is selected.

Mailbox number — Unique number between 0 and 5 that refers to a mailbox
area in RAM. Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable
for receive or transmit, and 4 and 5 are transmit mailboxes. In standard data
frame mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is associated with a receive mailbox. Only messages that
match the mailbox message identifier are accepted into it.

Message type — Select Standard (11-bit identifier) or Extended
(29-bit identifier).

Sample time — Frequency with which the mailbox is polled to determine if a
new message has been received. A new message causes a function call to be
emitted from the mailbox.

C24x CAN Receive

Dialog Box

See Also

References

Data type — Type of data in the 8-byte data vector. Valid values are uint16
or unit32.

Output message length — Select to output the message length in bytes to the
third output port. If not selected, the block has only two output ports.

Block Parameters: CZ4x CAN Receive k|

— C24w CaMN Receive [mazk)] [link]

Configures a CaM mailbox to receive meszages from the CAM bus ping on
the c2dx DSP. wWhen the meszage iz received, emits the function call to
the connected function-call subszystem az well as outputs the meszage
data in zelected format and the mezsage data lenagth in bytes.

— Parameters
Mailbox number:

i

Mezsage identifier:
|hin2dec['1 110001117

Message upe: IStandald [17-bit identifier] j
Sample time:

|1

Data type: [uint16 [~

[~ Dutput message lenath

QK I Cancel Help Appl |

C24x CAN Transmit
Detailed information on the CAN module is in the TMS320LF /LC240xA DSP

Controller Reference Guide — System and Peripherals, Literature Number
SPRU357B, available at the Texas Instruments Web site.

3-11

C24x CAN Transmit

Purpose
Library

Description

Mailbox: 5
A Msg C24x CAN
Transmit

C24x CAN Transmit

Dialog Box

See Also

3-12

Configure a CAN mailbox to transmit messages to the CAN pins
c2400dspchiplib in Embedded Target for TI C2000 DSP

The C24x Control Area Network (CAN) Transmit block generates source code
for transmitting CAN messages through a CAN mailbox. The CAN module on
the DSP chip provides serial communication capability and has six mailboxes
— two for receive, two for transmit, and two configurable for receive or
transmit. The C24x supports CAN data frames in standard or extended format.

Mailbox number — Unique number between 0 and 5 that refers to a mailbox
areain RAM. Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable
for receive or transmit, and 4 and 5 are transmit mailboxes. In standard data
frame mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is coded into a message that is sent to the CAN bus.

Message type — Select Standard (11-bit identifier) or Extended
(29-bit identifier).

Block Parameters: CZ24x CAN Transmikt |

—C24w CAM Tranzmit (magk] (link)

Configures a CAM mailbox bo tranzmit meszage to the CAM bus pins on the
c2x DSP.

— Parameters
t ailbox number:

tezzage identifier:
|bin2dec['1 110001117

Message type: | Standard [11-bit identifier) =l

Ok I Cancel Help Apply |

C24x CAN Receive

C24x CAN Transmit
|

References Detailed information on the CAN module is in the TMS320LF / LC240xA DSP
Controller Reference Guide — System and Peripherals, Literature Number
SPRU357B, available at the Texas Instruments website.

3-13

C24x GPIO Digital Input

Purpose

Library

Description

C24x GPIO DI

3-14

C24xGPIO_DI

Configure the shared general-purpose input/output pin registers
c2400dspchiplib in Embedded Target for TI C2000 DSP

This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital input. Each I/O port has one MUX register, which
is used to select peripheral operation or digital I/O operation.

I0 Port — Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE, or
I0PF and select the I/O port bits to enable for digital input. Unselected bits are
available for peripheral functionality. Note that multiple GPIO DI blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/0, the corresponding peripheral function cannot be used.

Sample time — Time interval, in seconds, between consecutive input from the
pins.

Data type — Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type. Valid data
types are auto, double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

The following tables show the shared pins.

10 MUX Output Control Register A

Bit Peripheral Name GPIO Name
3 QEP1 I0OPA3
4 QEP2 I0PA4
6 PWM1 I0PA6
7 PWM2 I0OPA7
8 PWM3 I0OPBO

C24x GPIO Digital Input

10 MUX Output Control Register A (Continued)

Bit Peripheral Name GPIO Name
9 PWM4 I0PB1
10 PWM5 IOPB2
11 PWM6 IOPB3

10 MUX Output Control Register C

Bit Peripheral GPIO Name
Name
1 PWM7 IOPE1
2 PWMS8 IOPE2
3 PWM9 IOPE3
4 PWM10 IOPE4
5 PWM11 IOPE5
6 PWM12 IOPE6
7 QEP3 IOPE7
8 QEP4 IOPFO

3-15

C24x GPIO Digital Input

Dialog Box

—C24x GPIO Digital Input [mazk] [link]

The digital |/0 ports module provides a fexible method for cantrolling both dedicated
1/0 and zhared pin functionz. Al 10 and shared pin functions are controlled uzing nine
16-bit registers.

—Parameters

I Port
¥ 10 Port BitD
[~ 10 Port Bit 1
[~ 0 Port Bit2
[~ 0 Port Bit3
[~ 0 Port Bit 4
[~ I0Port Bit5
[~ I0Port BitE
[~ I0Port Bit7

Sample tirme:
joom

[rata type: | auto LI

ak. LCancel Help | Apply |

See Also C24x GPIO Digital Output

3-16

C24x GPIO Digital Output

Purpose
Library

Description

J C24x GPIO DO

C24xGPIO_DO

Configure the shared general-purpose input/output pin registers
c2400dspchiplib in Embedded Target for TI C2000 DSP

This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital output. Each I/O port has one MUX register,
which is used to select peripheral operation or digital I/O operation.

IO Port — Select the input/output port to use: IOPA, I0PB, IOPC, I0PD, IOPE, or
I0PF and select the bits to enable for digital output. Unselected bits are
available for peripheral functionality. Note that multiple GPIO DO blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/0, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

10 MUX Output Control Register A

Bit Peripheral Name GPIO Name
3 QEP1 IOPA3
4 QEP2 I0PA4
6 PWM1 IOPA6
7 PWM2 IOPA7
8 PWM3 I0PBO
9 PWM4 I0OPB1
10 PWM5 I0PB2
11 PWM6 I0PB3

3-17

C24x GPIO Digital Output

10 MUX Output Control Register C

Bit Peripheral Name GPIO Name
1 PWM7 IOPE1
2 PWMS8 IOPE2
3 PWM9 IOPE3
4 PWM10 IOPE4
5 PWM11 IOPE5
6 PWM12 IOPE6
7 QEP3 IOPE7
8 QEP4 IOPFO

3-18

C24x GPIO Digital Output

|

Dialog Box

—C24% GPIO Digital Out [maszk] (link]
The digital |/0 ports module provides a fexible method for cantrolling both dedicated
1/0 and zhared pin functionz. Al 10 and shared pin functions are controlled uzing nine
16-bit registers.
—Parameters
10 For: T - |
¥ 10 Pait BitO
I~ 10 Pait Bit 1
I~ 10 Patt Bit2
I~ 10 Part Bit3
™ 10 Part Bit4
™ 10 Patt Bit5
I~ 10 Patt BitE
I~ 10 Patt Bit 7
Ok LCancel Help Spply
See Also C24x GPIO Digital Input

3-19

C24x PWM

Purpose Generate code that configures the Event Manager (EV) modules to generate
PWM waveforms

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description LF2407 DSPs include a set of pulse width modulators (PWM) used to generate

various signals. This block provides options to set the A or B module Event
Managers to generate the waveforms you require. The twelve PWMs are

C24x PWM o
configured in six pairs, with three pairs in each module.

C24x PWM Timer Panel
Module — Specifies which target PWM pairs to use:

® A — Displays the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and
PWM5/PWMS6).

e B — Displays the PWMs in module B (PWM7/PWMS8, PWM9/PWM10, and
PWM11/PWM12).

Note PWDMs in module A use Event Manager A, Timer 1, and PWMs in
module B use Event Manager B, Timer 3. You should make sure that the
TimerClock selected in the Scheduling section of the LF2407 eZdsp Target
Preferences block does not conflict with the timers used for the PWMs.

Waveform period source — Source from which the waveform period value is
obtained. Select Specify via dialog to enter the value in Waveform period
or select Input port to use a value from the input port.

Waveform period — Period of the timer used to generate PWM waveform
measured in clock cycles. The relationship betwen the timer period and the
waveform period depends on the Waveform type.

Note Clock cycles refers to the system CPU clock on the LF2407 chip. This
clock is 40 MHz.

3-20

C24x PWM

Waveform type — Type of waveform to be generated by the PWM pair. The
LF2407 PWMs can generate two types of waveforms: Asymmetric and
Symmetric. The following illustration shows the difference between the two
types of waveforms.

Asymmetric
waveform

Pulse width value

Resulfing pulse
waveform

Symmetric
waveform

Pulse width value

Resulting pulse
waveform

Output 1/Output 2/Output 3 Panels

Enable PWM#/PWM# — Check to activate the PWM pair. PWM1/PWM2 are
activated via the Output 1 panel, PWM3/PWM4 are on Output 2, and
PWM5/PWMS6 are on Output 3.

Pulse width source — Source from which the pulse width is obtained. Select
Specify via dialog to enter the value in Pulse width or select Input port to
use a value from the input port.

3-21

C24x PWM

3-22

Pulse width — Width of the pulse in clock cycles. The default is for the first
PWM in a pair to be triggered active high and for the second PWM to be
triggered active low.

PWM# control logic — Control logic trigger for the PWM. Active high
causes the pulse value to go from low to high and Active low causes the pulse
value to go from high to low.

Deadband Panel

Use deadband for PWM#/PWM# — Enables a deadband area of no signal
overlap at the beginning of particular PWM pair signals.

|
|
|
|
|
| PWM active high
|

|

Deadband —gm-
- PWM active low

Deadband prescaler — Number of clock cycles, which when multiplied by the
Deadband period, determines the size of the deadband. Selectable values are 1,
2,4, 8,16, and 32.

Deadband period — Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from 1 to 15.

ADC Control Panel

ADC start event — Controls whether this PWM and ADC associated with the
same EV module are synchronized. Select None for no synchronization or select

C24x PWM

an interrupt to generate the Source Start-of-Conversion (SOC) signal for the
associated ADC.

® None — The ADC and PWM are not synchronized. The EV does not generate
an SOC signal and the ADC is triggered by software (that is, the A/D
conversion occurs when the ADC block is executed in the software).

® Underflow interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the board’s General Purpose (GP)
timer counter reaches a hexadecimal value of FFFFh.

® Period interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value in GP timer matches
the value in the period register. The value set in Waveform period above
determines the value in the register.

Note If you select Period interrupt and specify a sampling time less than
the specified (Waveform period)/(CPU Clock speed), zero-order hold
interpolation will occur. (For example, if you enter 64000 as the waveform
period, the period for the ADC register is 64000/40 MHz = .0016. If you enter a
Sample time in the C24x ADC dialog that is less than this result, it will cause
zero-order hold interpolation.)

® Compare interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value in the GP timer
matches the value in the compare register. The value set in Pulse width
above determines the value in the register.

3-23

C24x PWM

Didlog Box Only the Timer panel is shown in the figure below. Press the desired tab to
display other panels.

C24x P/t [mask] (link]
’7 Configures the Event Manager of the C24x DSP to generate P waveforms.

IDutput‘I I Output 2 I Output 3 | Deadband | ADC Control I

Module: I A LI
Waveform period source; | Specify via dialog Ll
Wwhavelorn period [clock cpcles):

| 4000

W avefom type: | Syrmetric Ll

Ok I Cancel Help | Apply |

See Also C24x ADC

3-24

C24x QEP

Purpose
Library

Description

C24x QEP

C24xQEP

Configure the quadrature encoder pulse circuit
c2400dspchiplib in Embedded Target for TI C2000 DSP

Each 1L.2407 Event Manager has three capture units, which can log transitions
on its capture unit pins. Event manager A (EVA) uses capture units 1, 2, and
3. Event manager B (EVB) uses capture units 4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts quadrature
encoded input pulses on these capture unit pins. QEP pulses are two sequences
of pulses with varying frequency and a fixed phase shift of 90 degrees (or
one-quarter of a period). Both edges of the QEP pulses are counted so the
frequency of the QEP clock is four times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful for
obtaining speed and position information from a rotating machine. Logic in the
QEP circuit determines the direction of rotation by which sequence is leading.
For module A, if the QEP1 sequence leads, the general-purpose (GP) timer
counts up and if the QEP2 sequence leads, the timer counts down. The pulse
count and frequency determine the angular position and speed.

Module — Specifies which QEP pins to use:

e A — Uses QEP1 and QEP2 pins.
¢ B — Uses QEP3 and QEP4 pins.

Counting mode — Specifies how to count the QEP pulses:

® CountBase — Count the pulses based on the board’s GP Timer 2 (or GP
Timer 4 for EVB).

® RPMBase — Count the machine’s revolutions per minute.

Positive rotation — Defines whether to use Clockwise or Counter

clockwise as the direction to use as postitive rotation. This field appears only
if you select RPMBase above.

Encoder resolution — Number of QEP pulses per revolution. This field
appears only if you select RPMBase above.

Sample time — Time interval, in seconds, between consecutive reads from the
QEP pins.

3-25

C24x QEP

Data type — Data type of the QEP pin data. The data is read as 16-bit data
and then cast to the selected data type. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, uint32 or boolean.

Dialog Box
CJBlock Parameters: C24xQEP 21x]

—C24x QEF [mask] (link)

Configures quadrature encoder pulze circuit aszociated with the zelected Event
tanager module to decode and count quadrature encoded pulses applied to related
input ping [QEPT and GEF2 for EVA ar QEF3 and QEF4 far EVE]. Depending on the
zelected counting mode, the output iz either the pulse count or the rotor speed [when
a pulze zignal comes from an optical encoder mounted on a ratating machine].

—Parameters
Moce: [T - |
Counting mode: I Counter ﬂ
Sarnple tirme:
joom
[rata type: | auto LI

ak. I Cancel Help | Apply |

3-26

C28x ADC

Purpose
Library

Description

C28x ADC

C28x ADC

Generate code to configure the ADC to output data streams
c2800dspchiplib in Embedded Target for TI C2000 DSP

The C28x ADC block configures the C28x ADC to perform analog-to-digital
conversion of signals connected to the selected ADC input pins. The ADC block
outputs digital values reprensenting the analog input signal and stores the
converted values in the result register of your digital signal processor. You use
this block to capture and digitize analog signals from external sources such as
signal generators, frequency generators, or audio devices.

Triggering

The C28x ADC trigger mode depends on the internal setting of the Source
Start-of-Conversion (SOC) signal. The ADC is usually triggered by software at
the sample time intervals specified in the ADC block — this is unsychronized
mode.

In synchronized mode, the Event (EV) Manager associated with the same
module as the ADC triggers the ADC. In this case, the ADC is synchronized
with the PWM waveforms generated by the same EV unit via the ADC Start
Event signal setting. The ADC Start Event is set in the C28x PWM block. See
that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded-sequencer mode (see below).

Output
The output of the C28x ADC is a vector of uint16 values. The output values
are in the range 0 to 4095 because the C28x ADC is 12-bit converter.

Modes

The C28x ADC block supports ADC operation in dual-sequencer and
cascaded-sequencer modes. In dual-sequencer mode, either Module AorModule
B can be used for the ADC block, and two ADC blocks are allowed in the model.

In cascaded-sequencer mode, both Module A and Module B are used for a single
ADC block.

3-27

C28x ADC

3-28

Module — Specifies which DSP module to use:

® A — Displays the ADC channels in module A (ADCINAO through
ADCINAT).

®* B — Displays the ADC channels in module B (ADCINBO through
ADCINBYT).

e A and B — Displays the ADC channels in both modules A and B (ADCINAO
through ADCINA7 and ADCINBO through ADCINB7)

Use the check boxes to select the desired ADC channels.

Sample time — Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at which values are
read from the result registers. See “Scheduling and Timing” on page 1-8 for
additional information on timing.

To set different sample times for different groups of ADC channels, you must
add separate C28x ADC blocks to your model and set the desired sample times
for each block.

C28x ADC

|

Dialog Box
—C28x ADC [mask] (link]

Configures the ADC ta cutput a constant stream of data collected from the ADC ping
on the c28x DSP.

—Parameters

Mocule: [EEY— -

¥ ADCINAD
[~ ADCINAT
[ADCINAZ
[ADCINAZ
[~ ADCINAS
[ADCINAG
[ADCINAG
[~ ADCINAT

Sample time:

n

Ok I Cancel Help Spply

See Also C28x PWM

3-29

C28x eCAN Receive

Purpose

Library

Description

Mailbox: 0 f()
C28x eCAN
Receive Msg

b

C28x eCAN Receive

3-30

Configure an eCAN mailbox to receive messages from the eCAN pins and
output received messages at specified sample intervals

c2800dspchiplib in Embedded Target for TI C2000 DSP

The C28x enhanced Control Area Network (eCAN) Receive block generates
source code for receiving eCAN messages through an eCAN mailbox. The eCAN
module on the DSP chip provides serial communication capability and has 32
mailboxes configurable for receive or transmit. The C28x supports eCAN data
frames in standard or extended format.

The C28x eCAN Receive block has up to two and, optionally, three output ports.

¢ The first output port is the function call port, and a function call subsystem
should be connected to this port. When a new message is received, this
subsystem is executed.

¢ The second output port is the message data port. The received data is output
in the form of a vector of elements of the selected data type. The length of the
vector is always 8 bytes.

® The third output port is optional and appears only if Output message length
is selected.

Mailbox number — Unique number between 0 and 15 for standard or between
0 and 31 for enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is associated with a receive mailbox. Only messages that
match the mailbox message identifier are accepted into it.

Message type — Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time — Frequency with which the mailbox is polled to determine if a
new message has been received. A new message causes a function call to be
emitted from the mailbox.

Data type — Type of the data in the 8-byte data vector. Valid values are uint16
or unit32.

C28x eCAN Receive

Output message length — Select to output the message length in bytes to the
third output port. If not selected, the block has only two output ports.

Dialog Box
Block Parameters: CZ8x eCAN Receive k|

— C28x eCaN Receive [mazk] [link]

Configures an eCAM mailbox to receive messzages from the eCAM bus ping
on the c28x DSP. When the meszage iz received, emitz the function call
to the connected function-call subzystem az well a3 outputs the message
data in zelected format and the meszage data length in bptes,

— Parameters
M ailbos Humber:

i

Meszage identifier:
Ibin2dec["| 110001117

Message type: IStandard [17-bit identifier) j
Sample time;

|1

Data type: [vint1 5 [~

[~ Dutput message length

0k, I Cancel Help Apply |

See Also C28x eCAN Transmit
References Detailed information on the eCAN module is in the TMS320F28x DSP

Enhanced Control Area Network (eCAN) Reference Guide, Literature Number
SPRUO074A, available at the Texas Instruments Web site.

3-31

C28x eCAN Transmit

Purpose
Library

Description

Mailbox: 1
> Msg C28x eCAN
Transmit

C28x eCAN Transmit

Dialog Box

See Also

3-32

Configure an eCAN mailbox to transmit a message to the board’s CAN bus pins
c2800dspchiplib in Embedded Target for TI C2000 DSP

The C84x enhanced Control Area Network (eCAN) Transmit block generates
source code for transmitting eCAN messages through an eCAN mailbox. The
eCAN module on the DSP chip provides serial communication capability and
has 32 mailboxes configurable for receive or transmit. The C28x supports
eCAN data frames in standard or extended format.

Mailbox number — Unique number between 0 and 15 for standard or between
0 and 31 for enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier — Identifier of length 11 bits for standard frame size or
length 29 bits for extended frame size in decimal, binary, or hex. If in binary or
hex, use bin2dec(' ') or hex2dec (' '), respectively, to convert the entry. The
message identifier is coded into a message that is sent to the CAN bus.

Message type — Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Block Parameters: C28x eCAN Transmikt #|

— C28x eCAM Transmit [mazk] [link]

Configures an eCAM mailbox to transmit mezsage to the CAN buz ping on
the 284 DSP.

— Parameters
Mailbox number:

Mezsage identifier:
|hin2dec['1 110001117

Message tppe: IStandald [171-bit identifier) j

QK. I Cancel Help Apply |

C28x eCAN Receive

C28x eCAN Transmit
|

References Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature Number
SPRUO074A, available at the Texas Instruments Web site.

3-33

C28x GPIO Digital Input

Purpose

Library

Description

C28x GPIO DI

3-34

C28xGPIO_DI

Configure the shared general-purpose input/output pin registers
c2800dspchiplib in Embedded Target for TI C2000 DSP

This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital input. Each I/O port has one MUX register, which
is used to select peripheral operation or digital I/O operation.

I0 Port — Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE, or
I0PF and select the I/O Port bits to enable for digital input. Unselected bits are
available for peripheral functionality. Note that multiple GPIO DI blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/0, the corresponding peripheral function cannot be used.

Sample time — Time interval, in seconds, between consecutive input from the
pins.

Data type — Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type. Valid data
types are auto, double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

The following tables show the shared pins.

GPIO A MUX
Bit Peripheral Name GPIO Name
(bit =1) (bit = 0)
0 PWM1 GPIOAO
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOA3

C28x GPIO Digital Input

GPIO A MUX (Continued)

Bit Peripheral Name GPIO Name
(bit =1) (bit = 0)

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1 GPIOAS

9 QEP2 GPIOA9

GPIO B MUX

Bit Peripheral Name GPIO Name
(bit =1) (bit = 0)

0 PWM7 GPIOBO

1 PWMS8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3 GPIOBS

9 QEP4 GPIOB9

3-35

C28x GPIO Digital Input

Dialog Box

—C28x GPIO Digital Input [mazk] [link]

The digital |/0 ports module provides a fexible method for cantrolling both dedicated
1/0 and zhared pin functionz. Al 10 and shared pin functions are controlled uzing nine
16-bit registers.

—Parameters

10 Port:
¥ 10 Port BitD
[~ 10 Port Bit 1
[~ 0 Port Bit2
[~ 0 Port Bit3
[~ 0 Port Bit 4
[~ I0Port Bit5
[~ I0Port BitE
[~ I0Port Bit7
[~ I0Port BitE
[~ I0Port Bit3
[~ 10 Port Bit10
[~ 10 Port Bit11
[~ 10 Port Bit12
[~ 10 Port Bit13
[~ 10 Port Bit14
[~ 10 Port Bit15

Sample tirme:
joom
[rata type: | auto LI
ak. Cancel Help | Apply |
See Also C28x GPIO Digital Output

3-36

C28x GPIO Digital Output

Purpose
Library

Description

J C28x GPIO DO

C28xGPIO_DO

Configure the shared general-purpose input/output pin registers
c2800dspchiplib in Embedded Target for TI C2000 DSP

This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital output. Each I/O port has one MUX register,
which is used to select peripheral operation or digital I/O operation.

IO Port — Select the input/output port to use: IOPA, I0PB, IOPC, I0PD, IOPE, or
I0PF and select the I/O Port bits to enable for digital output. Unselected bits
are available for peripheral functionality. Note that multiple GPIO DO blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/0, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

GPIO A MUX
Bit Peripheral Name GPIO Name
(bit =1) (bit = 0)
0 PWM1 GPIOAO
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOA3
4 PWM5 GPIOA4
5 PWMS6 GPIOA5
8 QEP1 GPIOAS8
9 QEP2 GPIOA9

3-37

C28x GPIO Digital Output

GPIO B MUX
Bit Peripheral Name GPIO Name
(bit =1) (bit = 0)
0 PWM7 GPIOBO
1 PWMS8 GPIOB1
2 PWM9 GPIOB2
3 PWM10 GPIOB3
4 PWM11 GPIOB4
5 PWM12 GPIOB5
8 QEP3 GPIOBS8
9 QEP4 GPIOB9

3-38

C28x GPIO Digital Output

Dialog Box

See Also

[Z1Block Parameters: C26xGPID_DO

—C28x GPIO Digital Output [mazk] [link]

The digital |/0 ports module provides a fexible method for cantrolling both dedicated
1/0 and zhared pin functionz. Al 10 and shared pin functions are controlled uzing nine
16-bit registers.

2|

—Parameters

10 Part:
v 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part
[~ 10 Part

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 3
Bit 10
Bit 11
Bit 12
Bit 13
Bit 14
Bit 15

x|

LCancel

Help

Apply

C28x GPIO Digital Input

|

3-39

C28x PWM

Purpose Generate code that configures the Event Manager (EV) modules to generate
PWM waveforms

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description F2812 DSPs include a suite of pulse width modulators (PWM) used to generate

various signals. This block provides options to set the A or B module Event
Managers to generate the waveforms you require. The twelve PWMs are

C28x PWM o
configured in six pairs, with three pairs in each module.

C28x PWM Timer Panel
Module — Specifies which target PWM pairs to use:

® A — Displays the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and
PWM5/PWMS6).

¢ B — Displays the PWMs in module B (PWM7/PWMS8, PWM9/PWM10, and
PWM11/PWM12).

Note PWDMs in module A use Event Manager A, Timer 1, and PWMs in
module B use Event Manager B, Timer 3. You should make sure that the
TimerClock selected in the Scheduling section of the F2812 eZdsp Target
Preferences block does not conflict with the timers used for the PWMs.

Waveform period source — Source from which the waveform period value is
obtained. Select Specify via dialog to enter the value in Waveform period
or select Input port to use a value from the input port.

Waveform period — Period of the timer used to generate the PWM waveform
measured in clock cycles. The relationship betwen the timer period and the
waveform period depends on the Waveform type.

Note Clock cycles refers to the system CPU clock on the F2812 chip. This
clock is 150 MHz.

3-40

C28x PWM

Waveform type — Type of waveform to be generated by the PWM pair. The
F2812 PWMs can generate two types of waveforms: Asymmetric and
Symmetric. The following illustration shows the difference between the two
types of waveforms.

Asymmetric
waveform

Pulse width value

Resulting pulse
waveform

Symmetric
waveform

Pulse width value

Resulting pulse
waveform

Output 1/Output 2/Output 3 Panels

Enable PWM#/PWM# — Check to activate the PWM pair. PWM1/PWM2 are
activated via the Output 1 panel, PWM3/PWM4 are on Output 2, and
PWM5/PWMBS6 are on Output 3.

Pulse width source — Source from which the pulse width is obtained. Select
Specify via dialog to enter the value in Pulse width or select Input port to
use a value from the input port.

3-41

C28x PWM

3-42

Pulse width — Width of the pulse in clock cycles. The default is for the first
PWM in a pair to be triggered active high and for the second PWM to be
triggered active low.

PWM# control logic — Control logic trigger for the PWM. Active high causes
the pulse value to go from low to high and Active low causes the pulse value
to go from high to low.

Deadband Panel

Use deadband for PWM#/PWM# — Enables a deadband area of no signal
overlap at the beginning of particular PWM pair signals.

|
|
|
|
|
| PWM active high
|

|

Deadband —gm-
- PWM active low

Deadband prescaler — Number of clock cycles, which, when multiplied by the
Deadband period, determines the size of the deadband. Selectable values are 1,
2,4, 8,16, and 32.

Deadband period — Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from 1 to 15.

ADC Control Panel

ADC start event — Controls whether this PWM and ADC associated with the
same EV module are synchronized. Select None for no synchronization or select

C28x PWM

an interrupt to generate the Source Start-of-Conversion (SOC) signal for the
associated ADC.

® None — The ADC and PWM are not synchronized. The EV does not generate
an SOC signal and the ADC is triggered by software (that is, the A/D
conversion occurs when the ADC block is executed in the software).

® Underflow interrupt — The EV generates an SOC signal for the ADC
associated with the